Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь химическая квадрупольная

    Наряду с энергией связи и стабильностью ядер больщое значение в химических процессах имеют также магнитный и электрический моменты ядра. Спин ядра складывается из спинов нуклонов С/2Й) таким образом, что составляет четное или нечетное число, кратное исходному спину /гй. Поэтому спин ядра может для разных элементов меняться от О до 4,5. Он проявляется в сверхтонкой структуре атомных спектров и является основой метода ядерного магнитного резонанса. Так называемый квадрупольный момент ядра Q отражает асимметрию распределения заряда в ядре. Он особенно важен при взаимодействии между неполярными молекулами (например, молекулами СОг в газовой фазе). Q дает также информацию об отклонении ядра от сферической формы. [c.35]


    Физическая адсорбция вызывается силами молекулярного взаимодействия, к числу которых относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция связана с перераспределением электронов взаимодействующих между собой газа и твердого тела и с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкостей или процессу сжижения, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбата. [c.401]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР), относящаяся к радиоспектроскопическим методам, и метод мессбауэровской спектроскопии, называемый также методом ядерного гамма-резонанса (ЯГР), используются в структурных исследованиях и позволяют получать уникальную информацию о распределении электронной плотности и характере химических связей по сдвигам резонансных сигналов ядер и параметров градиента неоднородного электрического поля на ядрах, создаваемого электронным окружением. Эти данные важны как опорные для теоретической и квантовой химии. Оба метода применимы для исследования только твердых образцов. Исключительно высокая чувствительность обоих методов к малейшим изменениям электрических полей открывает возможность исследования широкого круга проблем, связанных с внутри- и межмолекулярными взаимодействиями. [c.87]

    В связи с тем, что спектры ЯКР получают для кристаллов, решающее значение для их интерпретации и извлечения структурной информации имеет знание основ кристаллохимии и кристаллографии, а прежде всего симметрии молекул и кристаллических структур. Как уже указывалось, квадрупольное ядро каждого не только химически, но и кристаллографически неэквивалентного резонирующего атома характеризуется своим сигналом ЯКР, т. е. значениями e qQ и т]. Этим обусловлена мультиплетность т, т. е. число линий ЯКР, соответствующее числу неэквивалентных позиций резонирующих атомов одного и того же изотопа (IV.14). Соотношение интенсивностей линий мультиплета записывается в виде [c.100]

    Несмотря на существенные упрощения, эта теория до настоящего времени составляет основу для интерпретации данных ЯКР и во многих случаях дает удовлетворительные результаты. Она же служит для решения таких обратных задач, как суждения об электронной структуре и характере химических связей в молекулах, степени их ионности, степени двоесвязности, 5-характере или степени гибридизации АО. Конечно, попытки разделить разные факторы, влияющие на градиент электрического поля на ядре в молекуле, создает известную неопределенность в интерпретации интегрального эффекта квадрупольного взаимодействия с помощью теории Таунса и Дейли. Но строгой теории градиента неоднородного электрического поля на ядре в настоящее время нет, хотя попытки более строгого рассмотрения задачи делались. [c.108]


    Для полярных молекул вычисление дополнительного вклада электрической энергии в виде суммы парных взаимодействий зарядов на атомных ионах является наиболее простым и естественным приближением в рамках метода атом-атомных потенциалов. Однако заряды на атомах молекулы зависят от атомного окружения и типа связей в молекуле, в состав которой входит данный атом. Поэтому выбрать значения зарядов для каждого атома данной молекулы затруднительно. Здесь необходимо привлечение квантово-химических расчетов. Эти расчеты должны дать такие значения зарядов на атомах, которые бы воспроизводили определенные экспериментально электрические дипольные и квадрупольные моменты молекул. [c.217]

    В действительности квадрупольный момент является тензором, а электрический момент диполя — вектором. Их взаимодействие с цеолитом надо рассчитывать с учетом соответствующих компонент и локального градиента напряженности электростатического поля в полости цеолита или представить общий квадрупольный (дипольный) момент как систему зарядов, распределенных на атомах или связях молекулы, и включить их взаимодействие с ионами решетки цеолита в атом-ионную потенциальную функцию. Последний путь является, вероятно, более правильным, однако он связан с трудностью решения задачи о распределении зарядов по атомам молекулы, которое, в свою очередь, может зависеть от напряженности поля в полости цеолита. Сделанные для СО2 расчеты на основе квантово-химических определений зарядов на атомах дали удовлетворительные результаты. [c.219]

    В кристаллах, элементарная ячейка которых отличается от кубической, почти во всех молекулах ядра находятся в неоднородном электрическом поле. Соответствующий градиент поля задается второй производной потенциала по пространственным координатам. Наибольшая компонента градиента поля, которая совпадает с направлением химической связи, равна ед у Ъ г. В таком неоднородном электрическом поле квадрупольное ядро может принимать несколько определенных ориентаций относительно градиентов поля, каждой из которых соответствует дискретное значение энергии. Положение уровня энергии определяется как 0(1 и является произведением квадрупольного момента eQ и градиента поля это произведение непосредственно измеряется в эксперименте. [c.34]

    В порошках двухквантовая прецессия благодаря зеемановскому взаимодействию приводит к спектрам в сл-области, что позволяет определить главные значения тензора химического сдвига. Обычные квадрупольные порошкообразные спектры появляются в сог-области, и химическое экранирование и тензоры квадрупольного взаимодействия могут быть связаны друг с другом. В двухквантовой спектроскопии можно одновременно использовать вращение образца под магическим углом [8.80]. В этом случае анизотропная часть зеемановского взаимодействия не появляется в двухквантовой сл-области. [c.551]

    Как и в случае амидов, на ЯМР-спектры незамещенных имидов оказывает влияние ядерный квадрупольный момент ядер В связи с этим сигнал М—Н часто широк (около 9 Гц), и иногда его трудно обнаружить [8]. В случае фталимида наблюдается также сиин-спиновое взаимодействие протона К—И и ядер и 13С (/( М— Н) 93 Гц, /(13С—1Н) 141 Гц) [202]. ПМР-спектры имидов исследовались недостаточно систематически, однако можно отметить некоторые тенденции. Например, константа спин-спинового взаимодействия между соседними метиленовыми протонами в циклических имидах составляет 18,5 Гц для пятичленных колец, но уменьшается до 16,4 Гц для шестичленных колец. Кроме того, было отмечено, что химический сдвиг протонов в положении 2 и [c.447]

    Примером такого влияния более далеких групп может служить отмеченное в нашей работе [68] и показанное на рис. 13 различие в химическом сдвиге и квадрупольном расщеплении между ме-тилметакрилатами триэтилолова и трифенилолова. В обоих случаях атом олова связан с одним кислородным и тремя углеродными атомами, но связи с тремя атомами углерода в ароматических группах отвечает несколько меньший градиент электрического поля и меньшая плотность электронного облака в области расположения ядра олова, чем для случая трех связей олова с жирными этильными группами. [c.39]

    Симметричная часть гамильтониана Ж остается, в то время как антисимметричная его часть рефокусируется тг-импульсом. Симметричная часть целиком состоит из билинейных членов, сдответству-юших, например, скалярным и дипольным связам и квадрупольным взаимодействиям, антисимметричная же часть отвечает химическому экранированию и гетероядерным взаимодействиям (при условии, что тг-импульс приложен только к одному виду ядер). Рассмотрим три примера. [c.117]

    Приведенное значение энергии связи Ое заметно отличается от экспериментального значения )е(эксп) = 9,906 эВ. Учет энергии корреляции (см. гл. 4, 6) позволяет существенно улучшить теоретическую оценку Ве. При обсуждении качества базиса следует обращать внимание не только на энергию, но и на такие физико-химические величины, как дипольный и квадрупольный моменты, диамагнитная восприимчивость, электростатический потенциал на ядрах и градиент электростатического потенциала, константа экранирования и тд. Некоторые из перечисленных величин изменяются по мере улучшения энергетических характеристик монотонно, а другие - немонотонно, например дипольный момент. Некоторые расширенные базисы, вполне приемлемые для оценки энергии, воспроизводят дипольный момент с довольно большой погрешностью. Включение в базисный набор поляризующих функций оказьшается весьма существенным. Это обстоятельство следует иметь в виду при решении конкретных задач. Например, при вычислении энергии взаимодействия полярных молекул важно получить достаточно точное значение ДИП0ЛЫ10Г0 момента в заданном базисе, так как дипольный момент определяет существенную компоненту в энергии взаимодействия -индукционное слагаемое. Поляризующие функции важны и при вычислении величины <г >, через которую выражается диамагнитная восприимчивость  [c.242]


    Этот новый ВИД спектроскопии твердых тел может дать химику полезную информацию о непосредственном окружении ядра, т. е. об его электронных оболочках. Однако этим методом можно исследовать не слишком легкие ядра (в настоящее время ядра тяжелее, чем К). Смещение резонансных линий, связанное с различными видами химической связи между атомами излучателя (или, наоборот, поглощающего излучения вещества), называют изомерным смещением , соответственно химическим смещением (открыто на атомах железа). Это смещение происходит в результате взаимодействия с 5-электронами. Расщепление спектральных линий, связанное с взаимодействием между электрическим ядерным квадрупольным моментом (разд. 4.2) и орбитальным моментом р- и -электронов, называют квадрупольным расщеплением. Тем самым становится возможным отдельно исследовать распределение 5-, р- и -электронов. Большие успехи были достигнуты, например, при исследовании соединений железа и олова методом мёссбауэров-ской спектроскопии. [c.129]

    Значения квадрупольных моментов ядер обычно известны, и экспериментальные исследования спектров ЯКР проводятся для получения частот переходов, констант квадрупольного взаимодействия, а значит, е ипараметров асимметрии градиента электрического поля Т1 (см. ниже), т. е. структурных данных, информации о распределении зарядов и характере химических связей. Например, чем больше ионный характер связи с данным атомом, тем меньше величина градиента поля и e qQ. Обратно, чем более ковалентной является химическая связь, тем выше соответствующая константа квадрупольного взаимодействия. Данные ЯКР предоставляют возможность экспериментальной проверки результатов квантово-механических расчетов и приближенного рассмотрения ряда проблем, связанных с внутри- и межмолекулярными взаимодействиями. Метод спектроскопии ЯКР важен как аналитический при работе с твердыми веществами, для которых не представляет трудности выращивание больших монокристаллов. [c.91]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    Исследование природы химической связи. Возможность применения ЯКР для исследования характера связи можно проиллюстрировать на простом примере. Заполненная электронная оболочка иона С1 сферически симметрична, градиент электрического поля у ядра равен нулю. Поэтому следует ожидать, что в чисто ионных хлоридах ядерный квадрупольный резонанс пе будет наблюдаться. В свободном атоме хлора электронное окружение несимметрично, имеется градиент электрического поля у ядра. Величина этого градиента известна из опытов с атомными пучками, из этих данных можно оценить частоту ЯКР для атома 54,87МГц. В органических соединениях частоты ЯКР С1 обычно равны 30--40 МГц, а в большинстве неорганических — порядка [c.332]

    Следует отметить, что не существует строгого физического определения степени ионности химической связи. Если в идеальной ионной молекуле -Ь й — сосредоточены в центрах заряженных атомов — ионов, то в реальной полярной молекуле не существует отдельных ато-мов. Наблюдаемые свойства (дипольный и квадрупольный момент, сдвиги в спектрах и т. д.) отражают асимметрию распределения электронной плотности в молекуле в целом, и определение по ним эффективных зарядов на атомах и степени ионности связи имеет условный характер. Поэтому только как условные характеристики отклонения с-вязи от чиЬто ковалентной или идеальной ионной должны рассматриваться различные критерии ионности (Полинг, Горди и др.). Однако эти критерии полезны при сравнительном анализе полярности связи в молекулах и кристаллах. [c.136]

    Ранее мы уже отмечали, что стимулированные резонансные переходы ядер между уровнями энергии могут происходить под действием локальных полей, флуктуируюш их вследствие теплового движения атомов и молекул, если в спектре флуктуаций присутствуют частоты, соответствуюш ие резонансной частоте. Этими переходами обеспечивается энергетическая связь между спиновой системой и решеткой, в результате которой происходит выравнивание их температур. Мы рассматривали один из основных механизмов релаксации — магнитные диполь-диполь-ные взаимодействия. Однако, суш ествуют и другие физические взаимодействия, посредством которых энергия ядерных спинов может передаваться тепловому резервуару — решетке. Это электрические квадрупольные взаимодействия-, пространственная анизотропия электронного окружения ядра (анизотропия химического сдвига) скалярное ядерное или электронно-ядерное взаимодействие спин-вращательное взаимодействие, т. е. все те виды взаимодействия, которые обеспечивают возникновение на ядрах флуктуируюш его магнитного (или на квадруполь-ном ядре — флуктуируюш его градиента электрического поля) в результате движения атомов или молекул. Эти виды взаимодействий детально рассмотрены в [168, 171]. [c.257]

    Значительно более важными являются возмущения, зависящие от времени. К ним относятся механическое вращение образца и стационарные или имульсные РЧ-поля. Быстрое вращение приводит к пространственному усреднению неоднородных или анизотропных параметров гамильтониана. Неоднородности магнитного поля, приводящие к распределению ларморовых частот, могут быть усреднены полностью, а анизотропные взаимодействия, такие, как дипольные или квадрупольные связи и анизотропная часть химических сдвигов, можно также усреднить до нуля достаточно быстрым вращением вокруг соответствующим образом выбранной оси вращения. Получающиеся при этом спектры описываются видоизмененным гамильтонианом, в котором зависящие от времени члены отсутствуют. Однако при медленных вращениях появляется набор боковых полос, которые уже не могут быть описаны только видоизмененным гамильтонианом, не зависящим от времени. Краткое описание такой ситуации может быть получено с помощью теории Флоке [3.4—3.6]. [c.99]

    Аналогичные зависимости химического сдвига и квадрупольного расщепления наблюдаются, судя по ЯГР-спектрам, и для комплексов, выделенных в твердую фазу. Так, при образовании комплексного соединения величина химического сдвига уменьшается на 1—2 мм/с например, для (ТЭА)з[Р1(8пС1з)5] 6=1,75 мм/с, что является следствием уменьшения 5з-электронной плотности, которое связано с частичным переходом 5з-электронов атома олова к атому платинового металла за счет образования б-связи. Увеличение значений квадрупольного расщепления происходит вследствие [c.28]

    Наряду с величинами химического сдвига и квадрупольного расщепления информацию о строении комплексов может дать анализ ширины компонентов дублета. Сравнение ширины правой и левой компоненты квадрупольных дублетов (Гз и Г1) позволяет охарактеризовать однородность образца/ которая связана также с симметрией дублетов. Асимметрия их проявляется в расширении правой компоненты (Г2) по отношению к левой (Г1). В этом случае наблюдаемый дублет представляет собой суперпозицию по крайней мере двух и более дублетов. Левые компоненты их почти совпадают, но величины химического сдвига и квадрупольного расщепления различаются. Одной из причин разницы форм компонент дублета может быть одновременное образование разных модификаций комплексного соединения. Следовательно, сравнение таких параметров ЯГР-спектров, как химический сдвиг, квад-рупольное расщепление, ширина компоненты, форма спектров, позволяет получить ценную информацию о твердофазовых превращениях комплексов, содержащих мессбауэровский атом. [c.29]

    Фам Куанг Зы (Московский государственный университет им. М. В. Ломоносова, химический факультет). Была исследована специфическая адсорбция азота (молекула группы В [1], в которой электронная плотность локально сосредоточена на периферии вследствие наличия я-связи, вызывающей значительный квадрупольный момент). Молекула азота соответствует по размерам и поляризуемости молекуле аргона, принадлежащей к группе Л. [c.190]

    Кайн и Рейбен [125] использовали Т1 как биологическую метку. Этот изотоп имеет спин /г его природное содержание составляет 70,5%. Уширение резанансного сигнала Т1+ стри связывании с белком, как и в случае не зависит от квадрупольной релаксации. Авторы применили этот метод для изучения способности пируваткиназы мышцы кролика к связыванию ионов металлов. Как известно, для проявления биологической функции этого фермента необходимы как одновалентные, так и двухвалентные ионы. Авторы обнаружили относительно небольшое, но хорошо заметное уширение линии Т1+ в присутствии белка, но не обнаружили изменений химического сдвига 2057] который, как известно, очень чувствителен к изменению характера химической связи. Они пришли к выводу, что обмен протекает настолько быстро, что уширение должно быть обусловлено соседством иона Мп2+, связанного в активном центре, и что места связывания ионов Т1+ и Мп + должны находиться очень близко друг к другу. [c.395]

    Галогениды водорода и его изотопов. Довольно много работ посвящено исследованию соединений галогенов с водородом и его изотопами, дейтерием и тритием [83—95]. Большая часть этих работ связана с оценкой и переоценкой тех данных, которые используются для расчета молекулярных постоянных. Другие работы выполнены с целью выяснения довольно интересных физических и химических явлений. Например, явление уши-рения линий поглощения при увеличении давления является основной проблемой при изучении пропускания инфракрасного излучения через атмосферу, а также в количественном анализе газов в инфракрасной области. Некоторые качественные особенности молекулярных взаимодействий в явлении уширения спектральных линий были выяснены при использовании в качестве исследуемых газов НС1 и СН4 в смеси с Не, Ne, А, Кг, Хе, SFe, О2, Н2, N2, СО, СО2, N2O, SO2 и НС [86]. Уширение линий поглощения газообразных НС1 и СН4 обусловлено взаимодействием молекул этих газов с молекулами примесных газов. Экспериментальные данные указывают, по-видимому, 1) на взаимодействие между индуцированным дипольным моментом молекул примесных газов и некоторыми неопределенными свойствами поглощающего газа, независимо от того, какой примесный газ используется, и 2) на взаимодействие квадрупольного момента молекул нримесиого газа с дипольным моментом [c.37]

    Возможности ЯМР как метода изучения химической связи количественно (считая по элементам) шире, чем ЭПР. Основная информация последнего получается за счет магнитных свойств центрального иона. Ядерный же резонанс позволяет получать информацию о всех составляющих комплекса и центрального иона, и л.игандов, и внешнесферных частиц, в том числе и растворителя, а также частей молекул растворителя и лигандов. Болл-хаузен [213] подчеркивает возможности ЯМР только в отношении лигандов. Однако, когда желательна однородная информация (а это бывает часто), то можно использовать ЯМР центрального иона для оценки коэффициента перекрывания, если осуществимо наблюдение сигналов ЯМР этого иона. Ясно, что это реально не только в случае дипольных ядер, но и квадрупольных. [c.256]

    Экспериментальные подтверждения этих результатов по необходимости должны быть косвенными, так как практически невозможно изменить силовую постоянную связи X—С, не изменяя при этом либо массы атомов, либо химическое окружение. Тем не менее есть достаточно доказательств существования этих эффектов. Если рассмотреть данные о длинах связей (полученные при исследованиях в микроволновой области) галогенпроизводных нитрилов и ацетонитрила, то оказывается, что гС=М имеет наибольшую величину в случае ЕСМ, постепенно уменьшается по ряду галогенпроизводных и еще более уменьшается в случае СНдСМ. Имеющиеся данные о квадрупольном взаимодействии с также согласуются с этими результатами. Это определенно указывает на существование химических эффектов, приводящих к изменению силовой постоянной связи С=К. Кроме того, силовые постоянные и частоты должны были бы меняться в такой последовательности Е<С1<Вг<1<СНз. В действительности, как показывают данные табл. 3.1, v N имеет наибольшее значение в случае ЕСМ, н по ряду галогенпроизводных эта величина уменьшается с уменьшением длины связи Из этой последовательности, совпадающей [c.77]

    Часто квадрупольное расщепление оказывается даже более чувствительным к природе химической связи (например степени ее ионности), чем химические сдвиги линий мёссбауэровских спектров. Кроме того, данные о химических сдвигах и квадрупольном расщеплении подчас существенно дополняют друг друга. Так, например, в спектре соединений типа НаЗпХа, где К играет относительно олова роль донора, а X — акцептора электронов, квадрупольное расщепление должно, в общем случае, усиливаться при переходе как к более, чем R, электроположительным заместителям R так и к более, чем X, электроотрицательным заместителям X. Однако в первом случае плотность электронного облака в области ядра олова будет скорее увеличиваться, а во втором случае — убывать. [c.31]

    СдН5)зЗп — СбН4 — СН = СНз, в молекуле которого в одном из бензольных колец находится в пара-положении винильная группа. В общем случае и удаленные от излучателя или поглотителя атомы и функциональные группы тоже (хотя и более слабо) влияют на природу химических связей самих мёссбауэровских атомов и потому обусловливают изменение химических сдвигов и квадрупольного [c.38]

    Таким образом, исследование мёссбауэровских спектров дает возмоншость охарактеризовать ближайшие химические связи атомов—поглотителей (или излучателей), исследовать взаимное влияние этих связей, а также, по-видимому, воздействие таких факторов, как индуктивный и мезомерный эффекты, индуктомерная поляризуемость разных близких и более удаленных заместителей на строение электронных оболочек мёссбауэровских атомов. При этом если обычные методы оценки влияния подобных факторов, например сравнение кислотности бензойной, уксусной, хлоруксусных кислот, показывают, как изменение электроноакцепторных свойств концевой группы влияет на электронную плотность на другом конце молекулы, например у кислотного водородного атома, то сравнение химических сдвигов и квадрупольного расщепления для олова в названных примерах характеризует изменение электрического поля в центре молекулы в зависимости от природы концевых групп. [c.39]


Смотреть страницы где упоминается термин Связь химическая квадрупольная: [c.23]    [c.315]    [c.315]    [c.93]    [c.210]    [c.211]    [c.86]    [c.380]    [c.168]    [c.53]    [c.380]    [c.193]    [c.256]    [c.5]    [c.30]    [c.31]    [c.37]    [c.48]    [c.49]   
Неорганическая химия (1987) -- [ c.507 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте