Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 15. Фосфор

    Весьма важной операцией является очистка ванадийсодержащих растворов от фосфора. Так как ванадий используется в сталелитейной промышленности, то присутствие в нем фосфора недопустимо. Между тем фосфор является постоянным спутником ванадия и дает с ним ряд устойчивых комплексных соединений. [c.121]

    Перед решением задач по теме Фосфор и его соединения необходимо как следует разобраться в различных аллотропных модификациях фосфора, а также в номенклатуре и свойствах фосфорных кислот. Следует обратить внимание на качественное определение различных фосфорных кислот (различия в условиях проведения и признаках реакций). [c.108]


    Так как алифатические сульфохлориды при обработке галоидными соединениями фосфора легко отщепляют сульфогруппы, образуя хлористые алкилы, то обработку солей парафиновых сульфокислот пятихлористым фосфором необходимо вести при возможно более низкой температуре. Тем не менее, если в качестве исходного продукта применяют соли вторичных сульфокислот, которые особенно чувствительны, то нельзя избежать образования также а хлористых алкилов. В случае низкомолекулярных соединений оба вещества — сульфохлорид и хлористый алкил — легко могут быть отделены друг от друга разгонкой. [c.383]

    К трубопроводам печного газа должны быть подведены горячая вода (80 °С) и пар. При разборке системы необходимо продуть газопроводы инертным газом для удаления печного газа, пропарить для разогревания элементарного фосфора, осевшего на стыках труб, промыть горячей водой для удаления фосфора и тем самым предупредить самовоспламенение фосфора в трубах при поступлении воздуха и промыть холодной водой до полного охлаждения. [c.388]

    При повышении давления равновесия смещаются в сторону образования веществ, обладающих меньшим объемом, т. е. в состояние с большей плотностью, что большей частью сопровождается увеличением их твердости. Повышение давления вызывает эффекты, в некоторых отношениях обратные тем, которые наблюдаются при повышении температуры. Так, при повышении температуры увеличивается объем, а при повышении давления он уменьшается при повышении температуры возрастает энтропия, а при повышении давления обычно она уменьшается. Часто наблюдается, что переход в форму устойчивую при более высоком давлении повышает металличность и степень симметрии кристалла. В области высоких давлений часто наблюдается переход веществ в такие кристаллические формы, которые не устойчивы или даже не существуют при обычных давлениях. Так, лед при высоком давлении, начиная примерно с 2000 атм, может существовать (в зависимости от сочетания температуры и давления) в нескольких различных кристаллических формах, не существующих при обычных давлениях. Все эти формы обладают большей плотностью, чем обычный лед. Например, плотность льда VI почти в полтора раза больше плотности обычного льда. Подобно этому желтый фосфор, обладающий в обычных условиях плотностью 1,82 г/сл1 , переходит- при высоких давлениях в черный фосфор с плотностью 2,70 г/сж серое олово (а = 8п, структура алмаза, плотность 5,75 з/с ), являющееся неметаллическим веществом, переходит в белое металлическое олово (Р=8п, тетрагональная структура, плотность 7,28 г/слг ) желтый мышьяк (плотность 2,0 г/см ) переходит в металлическую модификацию с плотностью 5,73 г/б .и . При высоких давлениях алмаз ( = 3,51 г/см ) становится более устойчивой формой, чем графит ( = 2,25 г/см ), хотя при обычных давлениях эти соотношения обратны. [c.241]


    Метод меченых атомов нашел дальнейшее развитие, когда научились искусственно получать новые радиоактивные изотопы и тех элементов (натрия, хлора, брома, серы, фосфора и других), природные изотопы которых нерадиоактивны. Это в несколько раз увеличило число элементов, используемых при методе меченых атомов, и вместе с тем во многих случаях позволило значительно повысить чувствительность метода, так как присутствие радиоактивного изотопа может быть обнаружено, даже если концентрация его очень мала, и часто довольно доступными способами. Преимущества эти настолько существенны, что наряду с дейтерием нашел применение и искусственно получаемый радиоактивный изотоп водорода—тритий. [c.542]

    Причина различной растворимости твердых веществ в разных растворителях пока еще недостаточно выяснена. Твердые вещества растворяются лучше всего в растворителях, сходных с ними по химическому составу. Так, сера хорошо растворяется в сероуглероде, фосфор — в трихлориде фосфора, фенолы в воде, причем чем больше гидроксильных групп содержит в своем составе фенол, тем больше его растворимость в воде. [c.401]

    В табл. 41 приведен состав золы коксов, полученных из малосернистого и сернистого крекинг-остатков и из каменноугольного пека (малосернистого). Основное отличие в составе золы малосернистого кокса от сернистого заключается в пониженном относительном содержании ванадия, никеля, фосфора и в повышенном содержании титана. Более низкое содержание натрия в пековом коксе объясняется тем, что каменноугольный пек является дистиллятным сырьем. [c.141]

    Среди антиокислительных и противокоррозионных присадок к маслам наиболее широкое применение нашли соединения, содержащие серу и фосфор. Высокая эффективность этих веществ определяется тем, что антиокислительные свойства их, обусловленные наличием серы, дополняются противокоррозионным действием фосфора. К таким присадкам относятся различные производные органических кислот фосфора, содержащие серу. Для по-. вышения стабильности смазочных масел к ним добавляют, например, соединения типа производных алкилфосфатов [c.44]

    Эффективность фосфорсодержащих присадок, как и сернистых, зависит от природы и строения применяемых соединений. Например, из эфиров кислот фосфора фосфиты предпочтительнее фосфатов, а алкиловые эфиры с длинной алифатической цепью дают лучшие результаты, чем ариловые эфиры. Форбсом с сотрудниками [143, 144] проводились систематические исследования влияния химического строения фосфорсодержащих соединений на их эксплуатационные свойства. Было установлено, что эффективность присадок не зависит от химической активности фосфорной кислоты, а зависит от пространственного строения углеводородных радикалов чем разветвленнее и длиннее углеводородный радикал, тем более затруднена сорбция присадки на -металле. Противоизносную же пленку на поверхности трения образует фосфат-анион, который, взаимодействуя с металлом, образует на нем пленку фосфата металла. [c.135]

    Анализ для определения отдельных элементов, составляющих соединения органической массы угля, т. е. количество углерода, водорода, кислорода, азота, серы и т. д., осуществляют методами, подобными методам, применяемым в органической химии. Некоторые из перечисленных элементов представляют больший или меньший интерес в отношении того, что касается процесса коксования и конечного качества получаемого кокса. Знание содержания серы представляется важным ввиду ее влияния на качество произведенного кокса, используемого в доменной печи. Содержание фосфора должно быть ограниченным при производстве определенных сортов электрометаллургических коксов. Напротив, азот, присутствующий в угле, не оказывает особого влияния, так же как и хлор, на производство кокса. Тем не менее опишем вкратце порядок нормального анализа для каждого из этих элементов для того, чтобы составить более полное представление об исследовании углей с помощью методов их элементного анализа. [c.48]

    Содержание фосфора в углях никогда не превышает 0,2%, а в большинстве случаев составляет сотые и даже тысячные доли процента. Тем не менее фосфор является очень вредной примесью, так как при выплавке чугуна последний приобретает холодную ломкость даже при содержании фосфора 0,003%. Качество стали также ухудшается с увеличением содержания в ней фосфора. [c.99]

    Зольные части нефти не перегоняются, а входят в остаток. Тем не менее в дистиллятах и маслах всегда имеется зола, но образующаяся уже в результате вторичных процессов разъедания аппаратуры, неполного освобождения от солей при очистке нефтепродуктов и т. д. Зола в нефти и нефтепродуктах состоит из большого количества компонентов, важнейшими из которых являются Са, Mg, Ге, А1 и ЗЮг (последний, очевидно, удерживается коллоидально). В золе сырых нефтей встречаются также ванадий, натрий, фосфор, калий, никель и т. д. [c.36]

    Медленное окисление паров фосфора сопровождается свечением. Это связано с тем, что при реакции фосфора с кислородом часть [c.125]


    Однако и Фрэнсису и мне было ясно, что модели, имевшиеся в лаборатории, не вполне подходили для нашей цели. Их года за полтора до этого сконструировал Джон для исследования пространственной структуры полипептидной цепи. Точных изображений атомных группировок, характерных для ДНК, среди них не было, как и моделей атомов фосфора или пуриновых и пиримидиновых оснований. Предстояло наспех что-то придумать заказывать их не было времени. Даже срочное изготовление совершенно новых моделей отняло бы у нас целую неделю, тогда как ответ мы могли получить через день-два. Поэтому, едва войдя в лабораторию, я принялся цеплять к моделям атомов углерода кусочки медной проволоки, тем самым превращая их в более крупные атомы фосфора. [c.54]

    Галоидные алкилены, у которых атом галоида не находится при двойной связи, могут быть получены теми же способами, что и галоид ные алкилы например, хлористый аллил получается из аллилового-спирта с помощью хлористых соединений фосфора или путем этерификации хлористым водородом  [c.105]

    Повышенные противоизносные и противозадирные свойства трансмиссионным маслам придаются путем добавок химически активных веществ. При очень тяжелых условиях работы шестерен трансмиссий обычные минеральные масла даже с присадками, улучшающими их противоизносные свойства, не пригодны, так как они не обеспечивают минимальных износов и не устраняют задиры. Только введение в масло химически активных присадок, соде15жащих серу, хлор, фосфор и т. д., дает положительные результаты. Действие таких присадок состоит в том, что при высоких температурах в зоне контакта поверхностей зубьев присадки разрушаются и взаимодействуют с металлом. При этом на поверхности металла образуются пленки хлоридов, сульфидов или фосфидов железа. Последние плавятся при более низких температурах, чем металлы, и тем самым предохраняют металлы от схватывания в точках контакта, уменьшают износ. Кроме того, благодаря пластинчатой структуре такие пленки обладают малым сопротивлением сдвигу, что обеспечивает снижение коэффициента трения. [c.183]

    Для уменьщения износа и увеличения липкости, в масло вводятся противоизносные присадки anti-wear additives) - жирные спирты, амиды, сложные эфиры, соединения фосфора и др., образующие химическую связь с поверхностью металла. При помощи таких присадок улучшается липкость даже при низкой вязкости масла. Чем больше прочность образованной пленки и чем сильнее она связана с поверхностью металла, тем меньше может быть вязкость масла для достижения такого же смазывающего эффекта и уменьшения износа деталей, а с применением менее вязкого масла снижаются потери энергии на прокачиваемость. [c.28]

    Вместе с тем в целом ряде случаев отсутствует прямая связь между термической стабильностью и эффективностью их противоизносного действия. Это объясняется тем, что помимо адсорбционной опособности и химической активности необходимо учитывать также свойства химически модифицированных слоев их состав, строение и толщину. Например, фосфиты наиболее эффективно взаимодействуют с металлом при 160 °С [258]. Эксперименты, проведенные с трибутилтритиофосфатом, показывают, что на стали фосфор связывается значительно интенсивнее, чем сера. Так, взаимодействие металла с фосфором отмечается уже при комнатной температуре, тогда как сера взаимодействует с металлом при температуре выше 100 °С [258]. [c.260]

    Красный фосфор по своим свойствам резко отличается от бе-01 о он очень медленно окисляется иа воздухе, не светится в емноте, загорается только при 260°С, не растворяется в сероуг-еродо и неядовит. Плотность красного фосфора составляет 2,0—, 4 г/см1 Переменное значение плотности обусловлено тем, что расиый фосфор состоит из нескольких форм. Их структура не вполне выяснена, однако известно, что онн являются полимерными еществами. [c.419]

    Уг л е р о д н с т ы е стали — это сплавы железа с углеродом, причем содержание последнего не превышает 2,14%. Однако в углеродистой стали промышленного пронзводстп.з все1 да имеются примеси миогих элементов. Присутствие одних примесей обусловлено особенностями производства стали например, при раскислении (см. стр. 682) в сталь вводят небольшие количества марганца или кремния, которые частично переходят в шлак в виде оксидов, а частично остаются в стали. Присутствие друп х примесей обусловлено тем, что они содержатся в исходной руде и в малых количествах переходят в чугун, а затем и в сталь. Полностью избавиться от них трудно. Вследствие этого, например, углеродистые стали обычно содержат 0,05—О,Р/о фосфора н серы. [c.685]

    Природные бокситы, которые использовали на первых установках Клауса, состоят в основном из оксидов алюминия и железа. Они содержат также кремнезем SIO2, оксиды титана TiOj, кальция СаО, магния MgO, марганца МпО, фосфора Р2О5 и др. Использование боксита в качестве катализатора было обусловлено, в первую очередь, его дешевизной, а также тем, что перерабатывались незначительные объемы сероводорода. Нагрузка на катализатор составляла всего 3-4 нм сероводорода на 1 м катализатора в час [13]. [c.105]

    Несколько менее высокие показатели наблюдаются при окислительном дегидрировании амиленов. В табл. 11.1 приведены результаты, полученные на лабораторной установке с применением фосфор-висмут-молибденового катализатора (13% активной массы на силикагеле) при дегидрировании фракции, содержащей практически только амилены. Известно, что при использовании сырья, содержащего другие углеводороды С5, в частности пиперилен и изопрен, а также при проведении процесса в металлических реакторах, показатели несколько ухудшаются. Тем не менее методом окислительного дегидрирования изоамиленов, по-видяыому, может быть получен изопрен с наибольшим выходом. [c.360]

    Для поглощения кислорода можно применять также желтый фосфор, который легко связывает кислород с образованием фосфорной кислоты Н3РО4. При наличии в газе паров тяжелых углеводородов употреблять фосфор не рекомендуется, так как в их присутствии фосфор перестает поглощать кислород. При комнатной температуре поглощение кислорода идет довольно быстро, между тем как при низких температурах оно не заканчивается в течение многих часов. Пипетка или поглотитель с фосфором должны быть покрыты черным лаком или бумагой, так как на свету желтый фосфор заметно переходит в красную малоактивную модификацию. При поглощении кислорода фосфором необходимо следить, чтобы в воде, покрывающей фосфор, не содержалось щелочи. [c.827]

    Эффективность фосфорных присадок, в частности трикрезилфосфата (СНзСбН40)зР04 (ТКФ), проверена в лабораторных, стендовых и дорожных испытаниях (рис. 1). Обнаружены некоторые особенности применения ТКФ- По-видимому, при его добавлении несколько увеличивается нагарообразование и повышаются требования двигателя к октановому числу применяемого топлива. С другой стороны, соединения фосфора, очевидно, снижают каталитическое действие нагара на предпламенные реакции, ведущие к детонации, уменьшая тем самым требования двигателя к детонационной стойкости бензина. Преобладание одного из этих факторов, [c.46]

    Улучшение работы свечей зажигания при добавлении фосфорных присадок принято объяснять следующим образом [1, 2]. Электрическое сопротивление такого соединения, как РЬВгг, резко уменьшается даже при нагреве до относительно невысоких температур, тогда как соединение фосфора со свинцом РЬз(Р04)2 остается неэлектропроводным (рис. 2) до весьма значительных тем- [c.48]

    Чем ближе химический состав золы кокса к составу огнеупорного материала, тем меньше его разрушение. Поэтому в печах с кислыми шлаками (кремнезем, окись фосфора и др.) следует применять кислые огнеупоры (динасовые, иолукислые), а с основными шлаками (окись кальция, магния и т. д.)—основные (магнезитовые). [c.243]

    Биологический синтез протеинов. В этих целях используются в основном алканы средней молекулярной массы. Тем не менее белково-внтаминный концентрат (БВК) может быть получен не только из жидких, но и газообразных нормальных алканов, а также из продуктов нх окисления. Последние лучше растворяются в воде и поэтому легче усваиваются микроорганизмами, что обеспечивает ббльшую экономичность процесса. Микроорганизмы представляют собой аэробные формы бактерий, избирательно использующие алканы в присутствии кислорода воздуха и питательной водной среды, содержащей неорганический или органический азот, соли фосфора, магния, калия, микроэлементы — железо, цинк, медь, марганец и другие, содержащиеся обычно в пресной и морской воде. Температура биосинтеза 25—40 °С. [c.204]

    Важной частью любого исследования чистой культуры является состав среды, в которой происходит рост организмов. Сложная питательная среда типа питательного бульона, часто используемая в бактериологических лабораториях, непригодна для проведения работ с битумами. Такие среды состоят из органических материалов типа пептонов или мясных экстрактов и углеводов в качестве источника углерода и энергии для роста микроорганизмов. В такой среде организмы, которые могут разрушать битум или углеводород, как правило, отдают предпочтение углеводу, а не углеводороду. Поэтому для исследования действия микроорганизмов на битумы нужно получить химически определенную среду, содержащую азот, фосфор, серу и ионы металлов, необходимые для роста, но не содержащую углеводов или каких-либо других легко ассимилирующихся форм углерода. Такой средой является состав, предложенный Филлипсом и Трекслером [20]. Выбор правильного сочетания ингредиентов усложняется тем, что у различных организмов требования к пище неодинаковы. В табл. 5.1 приводится состав среды, использованной для роста организмов класса Pseudomonas на углеводородах. Часто такие среды способствуют также росту организмов других видов. Чтобы установить, будет ли эта среда поддерживать рост организмов определенного вида, следует ввести глюкозу и привить организм. Если будет наблюдаться рост, то среда,, вероятно, может быть пригодна для роста микроорганизмов данного вида при использовании углеводорода или битума в качестве источника углерода вместо глюкозы. [c.179]

    В ЯМР-спектре по сольватному сдвигу на фосфоре можно судить об экстракционной способности фосфорорганических соединений она тем больще, чем больще химсдвиг [65]. Введение электроотрицательных (электрофильиых) заместителей в фосфорорганические соединения, простые эфиры и амины, благодаря индукционному эффекту, приводит к снижению электронной плотности на активном атоме и к снижению экстракционной способности. Наиболее электроотрицательными считаются группы F, С1, I3, RO. Замена этих групп на менее электрофильные, например алкильные, повышает электронную плотность на координационно-активном атоме. [c.17]

    Химическая энергия сырьевы.х материалов сосредоточена в их теплообразующих составляющих. Например, в чугуне туевыми являются углерод, кремний, марганец и фосфор в медном штейне или концентратах — сера и железо. Могут быть случаи, когда окисление данного элемента нежел-ательно по условиям технологического процесса (например, железо в чугуне или медь в штейне), но неизбежно имеет место. Соответствующий тепловой эффект должен учитываться по тем минимальным нормам окисления этого элемента, которые характерны для конкретного технологического процесса. [c.47]

    В молекуле спирта один водородный атом отличается от всех остальных тем, что он может быть замещен атомом металла, например атомо.ч натрия. Как показывает опыт, свойство это обыч то присуще тем атомам водорода, которые непосредственно соединены с кислородом. В соответствии с этим установлено, что при всех реакциях, приводящих к удалению из молекулы спирта атома кислорода, исчезает также и этот активный атом водорода. Примерами таких реакций являются отнятие от спирта одной молекулы воды с образованием олефина, а также замещение гидроксильной группы галоидрм при действии на спирт галоидных соединений фосфора  [c.107]

    Первое применение изотопной техники при исследовании процессов, происходящих в живой клетке, было сделано в 1923 г. X е в е ш и, изучавшим перенос и распределение радиоактивного свинца в живом растении. В 1935 г. тем же исследователем был впервые применен радиоактивный фосфор для выяснения распределения и циркуляции фосфора в организме крысы. С тех пор было проведено очень много подобных исследований с самыми различными изотопами по выяснению химических процессов, изучению биологических реакций и решению технических проблем. При этом нет никакой необходимости, чтобы исходное соединение было 100%-ным в отношении содержания применяемого изотопа в желаемом положении. В большииствг случаев достаточно, если изотопом элемента мечена лишь нек оторая часть молекул (около 5—20%), так как высокая чувствительность изотопного анализа позволяет провести определение изотопов уже при очень небольшом количестве вещества. [c.1142]

    Поливинилфосфор но кислые эфиры получают фосфорилированием поливинилового спирта хлорокисью фосфора. Для этого тонко измельченный порошок поливинилового спирта суспендируют в диоксане или хлорпроизводных алифатических углеводородов. В суспензию приливают хлорокись фосфора, разбавленную тем же растворителем. Образующийся хлористый водород удаляют из реактора. Реакцию проводят до прекращения выделения НС1. После фосфорилирования полимер утрачивает способность растворяться в воде, поэтому его легко отделить от других продуктов реакции. Полимер, обработанный горячей водой, уже не содержит хлора. [c.298]


Смотреть страницы где упоминается термин Тема 15. Фосфор: [c.195]    [c.302]    [c.39]    [c.149]    [c.216]    [c.64]    [c.76]    [c.429]    [c.336]    [c.132]    [c.45]    [c.316]    [c.156]    [c.304]    [c.119]    [c.129]    [c.620]   
Смотреть главы в:

Вопросы, упражнения и задачи по неорганической химии -> Тема 15. Фосфор




ПОИСК





Смотрите так же термины и статьи:

Тема 22. Фосфор, мышьяк, сурьма и висмут

Хай-Темя



© 2025 chem21.info Реклама на сайте