Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства и получение изобутилена

    Исходным сырьем для получения различных типов синтетического каучука могут служить бутадиен, изопрен, диметилбутадиен, изобутилен, хлоропрен, стирол и нитрил акриловой кислоты. Главные типы синтетического каучука буна — полимер бутадиена, буна 8 — кополимер бутадиена и стирола, пербунан — кополимер бутадиена и нитрила акриловой кислоты и неопрен — полимер хлоропрена с промежуточными типами. Другие эластичные продукты должны рассматриваться, однако, не как синтетический каучук, а скорее как заменители каучука. Сюда относятся полимер хлористого винила, тиокол,, получаемый путем обработки дихлорэтана полисульфидом натрия,, и разнообразные полибутилены, называемые вистанекс . В настоящее время эмульсионный метод полимеризации диенов является основным. Прежде применялась объемная полимеризация бутадиена при помощи металлического натрия, откуда возникло название буна . Этот процесс протекает медленно и не ведет к образованию высших полимеров он теперь вообще оставлен и заменен эмульсионным процессом. Ингредиенты эмульгируются с водой в таких условиях температуры и давления, при которых они превращаются в синтетический каучук, похожий на натуральный латекс каучукового дерева. Процесс эмульсионной полимеризации протекает очень быстро и дает продукт с лучшими свойствами. Получающийся продукт имеет ненасыщенный характер, его мол. вес достигает 150 000 . Совместная полимеризация бутадиена со стиролом или нитрилом акриловой кислоты сообщает синтетическому каучуку теплостойкость, повышенную стойкость к износу, улучшенные электрические свойства и меньшую растворимость в углеводородах. В химическом отношении эти кополимеры могут приближаться к синтетическим смолам это, например, зависит от относительных количеств стирола и бутадиена в их совместном полимере вообще полимеризацией указанных веществ можно приготовить продукты типа смол. [c.719]


    Изопрен (2-метилбутади0н-1,3) СНг=С—СН = СН2 служит компонентом сополимеризации с изобутиленом для получения бутилкаучука. Кроме того, на его основе можно получить синтетический каучук, идентичный натуральному и даже превосходящий его по некоторым свойствам. [c.29]

    Помимо указанных свойств, бутилкаучук обладает тем преимуществом перед всеми другими видами синтетических каучуков, что основной исходный продукт для его получения изобутилен—более доступен и выгоден, чем диен-дивинил и изопрен. [c.172]

    Нами был изучен процесс алкилирования бисфенола А изобутиленом и установлено влияние различных факторов на ход процесса и свойства полученного продукта. [c.410]

    Исходными материалами для получения полимерных углеводородов, рассматриваемых в настоящей главе, служат непредельные углеводороды этилен, пропилен, н-бутилены, изобутилен, стирол и др. Полимерные углеводороды, полученные полимеризацией указанных соединений, которые также называют полиолефинами, являются насыщенными соединениями, так как содержащиеся в цепях двойные связи приходятся па очень большое число атомов углерода (порядка нескольких тысяч). Этим определяются такие свойства полимерных углеводородов, как химическая инертность и влагостойкость. [c.92]

    Получают из газов крекинга нефти. Применяют для получения бутадиена, смазочных масел и моторного топлива, а изобутилен для производства бутилкаучука. Бутилкаучук — продукт полимеризации изобутилена (СНз)-2С==СНа и небольших количеств изопрена. Прозрачная эластичная масса белого цвета, с хорошими электроизоляционными свойствами. Б. применяют для изготовления автомобильных камер,прорезиненных тканей, различных резиновых изделий и электроизоляционных материалов. [c.29]

    До середины 1950-х гг. все попытки получить полиолефины из иных мономеров, чем этилен и изобутилен, приводили к образованию лишь низкомолекулярных продуктов, промышленная ценность которых невелика. Причиной этих неудач является протекание реакций переноса активного центра (путем отрыва атома водорода от олефина), конкурирующих с реакциями роста цепи путем присоединения радикала. Однако в 1954 г. Натта, продолжая исследования Циглера, обнаружил, что некоторые биметаллические катализаторы циглеровского типа способны превращать пропилен и многие другие а-олефины, в частности 4-метилпентен-1 и бутен-1, в кристаллические полимеры. Путем небольших изменений состава и физической природы катализаторов этому ученому удалось получить несколько видов высокомолекулярного полипропилена, значительно различающихся по свойствам. При дальнейшем изучении было установлено, что эти свойства обусловлены различной стереорегулярностью полученных продуктов (см. выше). Изотактический полипропилен оказался похожим во многих отношениях на полиэтилен высокой плотности, тогда как атактическая форма полипропилена характеризовалась аморфной структурой и низкими прочностными характеристиками. Метильные группы, связанные с альтернантными атомами углерода основной цепи, оказывают разностороннее влияние на свойства полимера. Так, с одной стороны, они увеличивают жесткость макромолекуляр- [c.256]


    Окамура и Ямасита [519] изучали блочную сополимеризацию акрилонитрила с изобутиленом и обнаружили, что реакционноспособность мономеров составляет соответственно = 1,02, Г2= 0. Описано получение [520] и основные свойства сополимеров акрилонитрила со стиролом [521—523]. Хэм [524] и Джоши [525], исходя из предположения о влиянии предпоследней мономерной единицы на реакционную способность полимерного радикала, рассчитали константы сополимеризации акрилонитрила со стиролом. [c.451]

    Совершенно особое место занимает продукт совместной низкотемпературной полимеризации изобутилена и небольших количеств диенов (изопрена, дивинила), — так называемый бутил-каучук. Продукты низкотемпературной полимеризации изобутилена, полнизобутилены (стр. 335), во всем напоминая каучук, лишены способности вулканизоваться, т. е. переходить из пластического в эластическое состояние. Это объясняется отсутствием двойных связей в полимерных молекулах. Однако оказалось, что полиизобутилен приобретает способность вулканизоваться при наличии хотя бы небольшой непредельности это может быть достигнуто добавкой к изобутилену при полимеризации 2—3% диена. Получающиеся при этом продукты — бутил-каучуки — обладают в вулканизованном виде рядом очень ценных свойств они мало проницаемы для газов, не изменяются под действием кислорода воздуха (не происходит старение ), не разрушаются озоном, а также при действии ультрафиолетовых лучей, почти инертны в отношении кислот и т. п. Однако сложность технологического оформления процессов получения бутил-каучука препятствует пока широкому развитию его производства. [c.375]

    При крекинге нефти образуются также три вида бутиленов. Изобутилен легко полимеризуется и применяется для получения веществ, свойства которых подобны каучуку. [c.101]

    С помощью катализаторов Фриделя — Крафтса при умеренно низких температурах можно сополимеризовать изобутилен с н-бутиленами и другими низшими моноолефинами, получая при этом сополимерное масло 55 , [56], [57], [58], [59], [60], [61], [62], [63]. Технология этого производства ничем не отличается от технологии получения полиизобутиленовых масел (см. 2 главы VI раздела второго). Гидрирование сополимерных масел существенно улучшает их эксплуатационные свойства. [c.202]

    Изобутилен, его свойства и источники получения [c.209]

    Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]

    Изобутилен, имеющий в молекуле ненасыщенную двойную связь, способен полимеризоваться. Изобутилен в промышленности синтетического каучука в настоящее время применяют для получения а) полиизобутилена, представляющего собой чистый полимер изобутилена б) бутилкаучука, являющегося совместным полимером изобутилена и небольших количеств изопрена. Кроме того, изобутилен находит широкое применение в нефтеперерабатывающей промышленности для получения из него изооктана — добавки, улучшающей свойства авиационных бензинов. [c.209]

    Впервые изопрен был получен Вильямсом в 1860 г. путем деструктивной перегонки (пиролиза) натурального каучука и гуттаперчи. Изопрен применяется в качестве дополнительного мономера при совместной полимеризации с изобутиленом для получения бутилкаучука. В последние годы было установлено, что цис-полиизопреновый каучук по своим свойствам превосходит все известные виды синтетических каучуков. В связи с этим назрела необходимость промышленного производства изопрена. [c.249]

    Изопрен (2-метилбутадиен-1,3) используется как мономер для получения стереорегулярного цис-полиизопренового каучука, почти не уступающего по свойствам натуральному каучуку и используется, главным образом, при производстве резиновых шин Сополимеризацией с изобутиленом из изопрена производят также бутижаучук. [c.31]

    Разновидностью трубчатого аппарата является полимеризатор для синтеза бутилкаучука (рис. 7.4). Бутилкаучук получают совместной полимеризацией изобутилена с изопреном (1,5—4,5%). Так как скорости полимеризации изобутилена и изопрена различны, то при проведении процесса в реакторе периодического действия реакционная смесь постепенно будет обедняться изобутиленом, скорость полимеризации которого больше, чем скорость полимеризации изопрена. В результате получаемый полимер будет представлять собой смесь частиц с различным содержанием изопрена, что нежелательно. Для получения полимера с постоянными свойствами процесс следовало бы вести в проточном реакторе идеального смешения, в котором поддерживается постоянная концентрация реагентов. В полимеризаторе, показанном на рис. 7.4, приближение к идеальному смешению обеспечивается тем, что циркуляция реагентов внутри аппарата значительно превышает внешнюю циркуляцию, т. е. объемную скорость прокачки реагентов через аппарат. Для интенсивной внутренней циркуляции реагентов предусмотрен осевой насос 4 (пропеллерная мешалка). Для интенсивного отвода тепла, выделяющегося при проведении реакции, аппарат имеет встроенный охлаждаемый трубный пучок 3. [c.182]


    Для оценки способности катализатора Гайера полимеризовать изобутилен было интересно прежде всего сравнить свойства полученного в его присутствии полимеризата с продуктом, образующимся из изобутилена в присутствии фосфорной кислоты, широко применяемой как промышленный катализатор полимеризации олефинов. Оказалось, что кривые разгонки обоих полимеризатов, полученных в близких температурных условиях, указывают на весьма значительное сходство в их составе и что, следовательно, характер полимеризующего и изомеризующего действия обоих катализаторов на изобутилен аналогичен. Они сходны также и по активности. Утомляемость катализатора Гайера значительно выше, чем фосфорнокислого, и условий его достаточно легкой регенерации пока найти не удалось (опыты велись только под атмосферным давлением). [c.257]

    По мнению А. Д. Петрова [12], суждение о строении изопарафиновых углеводородов, получаемых полимеризацией этилена, может быть лишь гипотетическим, так как еще отсутствуют экспериментальные данные о строении низших полимеров этилена, а возможности получения разнообразных форм очень велики (димером может быть как н-бутилен, так и изобутилен, углеводородами состава Сд—сополимеры н-бутилена и изобутилена и т. д.). Несомненно лишь, что эти полимеры характеризуются асимметричными структурами, так как они застывают в виде стекол и среди них нет твердых кристаллических парафиновых углеводородов. Некоторые свойства масел, полученных полимеризацией этилена, рассмотрены в работе Г. Гейзелера и его сотрудников [27]. Свойства типичных масел, полученных полимеризацией этилена, приведены в табл. 150. [c.398]

    Получение чистых а- и р-бутиленов представляет наибольший интерес потому, что отдельные компоненты фракции С4 очень близки по физ ическим и химическим свойствам не только друг другу, но и другим газам бутану, изобутану, изобутилену, дивинилу, и выделение - гх в чистом виде особенно трудоемиий процесс. Физико-химические свойства ух ле-водородов фракции С4 приведены в таблице 1. [c.54]

    Изобутилен и другие бутилены широко применяются для получения различных сополимеров. Разработан метод получения сополимеров, содержащих 62—85 вес. % акрилонитрила, отвечающего формуле СНг = С(У)СЫ (где У — Н, СНз, С1, С2Н5) и 15— 38 вес. % изобутилена. Сополимер имеет приведенную вязкость 0,1—1 и содержит после омыления от 5 до 80% теоретического количества СООН-групп [1356]. Отмечается, что введение серы в сополимер изобутилена с акрилонитрилом повышает его теплостойкость [1357]. Для стабилизации подобных сополимеров рекомендуется вводить в них от 2 до 20% соединен11Й, имеющих формулу Н0С2Н4Ы(Х)С(У)=0, где X—метил, этил или 2-ок-сиэтил V — Н или метил [1358]. Некоторые свойства тройных [c.259]

    Впервые каталитическое действие трехфтористого бора было исследовано более 70 лет назад А. М. Бутлеровым в полимеризации пропилена и изобутит > на. В последнее время этим способом получают пзооктилен, который после гидрирования превращается в изооктан —важнейшую составную часть высокооктанового топлива. Другой способ получения изооктана — алкилирование изобутана изобутиленом в присутствии ВГз. Комплексные соединения трехфтористого бора — лучшие катализаторы алкилирования изопарафинов олефинами. Много внимания уделяется синтезу алки л замещенных бензолов при помощи ВГз. Продукты этого синтеза обладают высокими антидетона-ционными свойствами и служат ценными компонентами авиационного топлива для винтомоторных самолетов. Широко изучена полимеризация изобутилена в присутствии ВГз, приводящая к образованию некоторых сортов синтетического каучука. [c.31]

    Конкретный пример существования веществ с одинаковым составом был известен Дальтону. Он заметил, что выделенный из конденсата светильного газа углеводород имеет тот же элементный состав, что и маслородный газ (этилен), Дальтон высказал мысль, что новый углеводород представляет собой двойной атом маслородного газа. Это был бутилен, впоследствии более подробно изученный Фарадеем. В 1825 г. Фарадей исследовал масло, выделенное из конденсата газа, полученного при нагревании китового жира. Из этого конденсата Фарадей выделил два углеводорода — бензол и другой, более летучий газ, анализ которого дал состав вполне идентичный составу маслородного газа (этилена). Новый газ (изобутилен) отличался от этилена но плотности и по химическим свойствам. [c.166]

    В опытах с газообразным углеводородом (изобутилен) все изменение методики сводилось к тому, что углеводород медленно пропускался через склянку Дрекселя с крепкой серной кислотой при хорошем охлаждении. Как и следовало ожидать, при выделении отдельных продуктов гидрополимеризации этиленовых углеводородов встретились большие затруднения. Причина заключалась прежде всего в недостаточной чистоте исходных этиленовых углеводородов, которыми мы располагали, и, соответственно этому, в слишком большом числе изомерных гидрополимеров, которые образовались при гидрополимеризации. Нередко сюда присоединялось еш,е одно немаловажное обстоятельство. Как было указано выше, выделенные гидрополимеры обнаруживали иногда присутствие непредельных нримесей, которые, естественно, еш,е больше осложняли состав данной смеси и затрудняли ее разделение. Таким образом, понятно, что даже в тех случаях, когда такое разделение нам удавалось, выделенные гидронолимеры ни в коем случае не являлись чистыми индивидуальными веществами, а их элементный состав, молекулярный вес и свойства определялись нами лишь с целью характеристики степени гидрополимеризации для каждого частного случая. И тем не менее, даже с только что приведенной оговоркой, полученные результаты позволяют сделать небезынтересные выводы о механизме этой реакции этиленовых углеводородов. [c.213]

    Еще более убедительная иллюстрация связи между полимеризацией и гидронолимеризацией этиленовых углеводородов получена нами при ближайшем исследовании химической природы гидротримера изобутилена. Мы избрали для этой цели следующий способ. Тот же самый исходный изобутилен мы подвергли полимеризации под влиянием разбавленной серной кислоты по Бутлерову, выделили из продукта этой реакции непредельный тример, подвергли его гидрогенизации в присутствии платинированного угля при 200° С и сравнили свойства приготовленного таким образом углеводорода с гидротримером, полученным из того же изобутилена действием крепкой серной кислоты, т.е. путем его гидрополимеризации. Свойства этих двух углеводородов, а именно их температура кипения, удельный вес и показатель преломления, оказались практически одни и те же, и, следовательно, оба эти углеводорода тождественны. То же самое, по-видимому, можно сказать относительно гидродимера изобутилена и углеводорода, получаемого гидрогенизацией непредельного, бутлеровского, димера изобутилена. Таким образом, гндронолимеризация изобутилена, очевидно-проходит через промежуточное образование непредельных полимеров этого углеводорода, которые превращаются затем в соответст,  [c.214]

    После выяснения строения диизобутилена и механизма реакции его образования Бутлеров приступил к изучению триизобутилена, который получался при действии на изобутилен более концентрированной серной кислоты. Параллельные опыты по получению триизобутилена другим путем вела в бутлеровской лаборатории Лермонтова. После изучения реакции образования и свойств триизобутилена Вутлеров пришел к выводу, что ему отвечеает формула [c.189]

    На первый взгляд химия изобутилена и полиизобутилена проста и не может представлять особого интереса для химиков с точки зрения получения новых продуктов, улучшения свойств известных соединений, расширения областей применения. Действительно, способ получения полиизобутилена-катионная полимеризация-довольно ординарен. Более того, в полиизобутилене отсутствуют дефекты структуры цепи, способные служить центрами модификации полимера и содействовать изменению его свойств. Если еще учесть то обстоятельство, что изобутилен, как и большинство катионоактивных мономеров, с трудом сополимеризуется с другими соединениями, известный консерватизм взглядов на химию и технологию полиизобутилена имеет, казалось бы, объективное обоснование. Между тем многие аспекты химии и технологии изобутилена и его полимеров не ясны и в лучшем случае дискуссионны. Поэтому глубокий интерес к фундаментальным и перспективным исследованиям в области изобутилета и его полимеров поддерживается уже многие десятилетия и постоянно стимулируется новыми экспериментальными данными. Очевидно, что ряд традиционных представлений, в частности о механизме и кинетике полимеризации мономера, оформлении технологического процесса производства полимеров изобутилена, нуждаются в основательном пересмотре или более того в развитии существенно новых и принципиально отличающихся теоретических и практических подходов. [c.4]

    Ориентировочные сведения об относительной активности изобутилена и других мономеров в катионной сополимеризации дает также использование соответствующих значений параметра е уравнения Алфрея-Прайса, полученных для свободнорадикальной полимеризации [56, с. 483]. При пренебрежении эффектом последних звеньев на стадии роста полимерной цепи принимается, что 1/ 12 = ехр(е2 — ех) (где и 2 параметры, характеризующие полярные свойства сомономеров). Опубликованные в литературе значения параметров е -1,77 (изобутилвиниловый эфир), — 1,27 (а-метилстирол), — 1,03 (инден), — 0, (изобутилен), -0,80 (стиролХ -0,33 (п-хлорстирол) правильно отражают поведение изобутилена в сополимеризации с указанными мономерами. [c.110]

    Дивипилбензол в качестве компонента сополимеризации а изобутиленом обладает одним весьма характерным свойством даже небольшая добавка дивинилбензола к полимеризуемому изобутилену приводит к получению абсолютно нерастворимого сополимеризата с сетчатой молекулярной структурой. Добавка к смеси исходных мономеров 10—20% к-бутилена-1 тормозит образование сетчатой структуры настолько, что удается получить сополимеризат, хорошо поддающийся обработке и вулканизации [142]. [c.214]

    Для получения материалов с новыми свойствами была исследована возможность синтеза тройных сополимеров . В качестве третьих компонентов были опробованы, при различных соотношениях, нитрил акриловой кислоты, стирол, винилацетат, метилметакрилат, зтилакрилат, монохлор-стирол (смесь изомеров), изобутилен, а-метилстирол, хлористый винил, изобутилен. [c.46]


Смотреть страницы где упоминается термин Свойства и получение изобутилена: [c.188]    [c.92]    [c.221]    [c.39]    [c.425]    [c.253]    [c.249]    [c.14]    [c.121]   
Смотреть главы в:

Изобутилен и его полимеры  -> Свойства и получение изобутилена




ПОИСК





Смотрите так же термины и статьи:

Изобутилен

получение и свойства



© 2025 chem21.info Реклама на сайте