Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обмен изотопов серы

    Обмен изотопов серы 315 [c.315]

    IV. ОБМЕН ИЗОТОПОВ СЕРЫ НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ [c.315]

    IV. Обмен изотопов серы 317 [c.317]

    Основные научные работы посвящены применению масс-спект-рометрии для решения широкого круга химических, физических и геохимических задач. Одним из первых начал определять содержание различных изотопов в природных продуктах и указал, что с помощью этих данных можно установить происхождение соответствующих материалов. Показал, что данные, полученные при изучении кинетических изотопных эффектов, являются мощным средством при установлении механизма реакций, особеиио нри определении структуры активированного комплекса. Изучал содержание изотопов серы в различных природных продук-тах. Один из пионеров применения масс-снектрометрии для изучения содержания продуктов ядерного распада определил выход таких продуктов для многих реакций. Внес существенный вклад в изучение функции щитовидной железы с помощью радиоактивного иода. Разрабатывал методы разделения стабильных изотопов (изотопный обмен, термическая диф- [c.493]


    Следует отметить , что если химическое равновесие устанавливается медленно, то обычно и соответствующее изотопическое равновесие устанавливается медленно. Так, ионы ЗО " в водных растворах восстанавливаются бесконечно медленно и обмен атомами изотопов серы между сульфат-ионами и соединениями, где сера имеет меньшую степень окисления, также идет бесконечно медленно. [c.308]

    Обмен серы в разных соединениях изучался довольно подробно в ряде работ, особенно в последние годы. Интерес к нему вызван большими пробелами в химии соединений серы и значением их реакций. В этих работах почти исключительно применялся радиоактивный изотоп серы S . [c.315]

    Обменные реакции изотопов серы  [c.336]

    Дополнение 52 (к стр, 336 ) Обменные реакции изотопов серы [c.433]

    Осн. работы посвящены применению масс-спектрометрии для решения широкого круга хим., физ. и геохимических задач. Показал, что данные, полученные при изучении кинетических изотопных эффектов, являются мощным средством при установлении механизма р-ций. Изучал содержание изотопов серы в различных природных продуктах. Один из пионеров применения масс-спектрометрии для изучения содержания продуктов ядерного распада. Внес существенный вклад в изучение функции щитовидной железы с помощью радиоактивного изотопа иода. Разрабатывал методы разделения стабильных изотопов (изотопный обмен, термическая диффузия). Предложил методы обогащения азотом-15 и кислородом- 18. [c.432]

    Из некоторых железо-серных белков можно удалить железо и лабильную серу, а затем снова реконструировать активный фермент, соответствующим образом добавляя сульфид и атомы железа. Аналогичным образом можно произвести обмен природного изотопа Ре (с нулевым ядерным спином) на изотоп = Ре, имеющий магнитные ядра [50]. Точно так же 5 можно заменить на 5е. Образующиеся белки функ- [c.383]

    Очень важной областью применения искусственных радиоактивных изотопов является биология. С помощью радиоактивных, меченых, ато. юв удается следить за обменом веществ в живом организме. Так, например, при введении радиоактивных изотопов (фосфора, серы и других элементов) в питательную среду для растений удалось установить скорость передвижения этих веществ по органам растений (рис. 25), усвоение растениями двуокиси углерода, свободного азота. При введении в человеческий организм вместе с поваренной солью ничтожно малой принеси радиоактивного изотопа натрия была установлена роль натрия в процессе обмена. В настоящее время радиоактивным изотопом натрия лечат некоторые сердечно-сосудистые заболевания. Радиоактивный изотоп иода применяется при диагностике заболевания щитовидной железы, а радиоактивный изотоп фосфора — для лечения болезней крови и кожи. Радиоактивный изотоп кобальта служит хорошим заменителем радия при лечении злокачественных опухолей. [c.67]


    Изучение изотопного обмена позволяет судить и о характере связи. Так, используя радиоактивную серу выявили наличие обмена в связях С = 5 в органических соединениях и отсутствие обмена в связях Р = 5, что было объяснено меньшей поляризуемостью во втором типе связи. Следует оговориться, что употребляя термин прочность связи , нужно ясно представлять себе, какой характер реакции замеш,ения имеется в виду, т. е. происходит ли эта реакция по ионно-молекулярному (гетеролитическому) или атомному (гемолитическому) механизму. Один и тот же заместитель в углеродной цепочке и длина цепи оказывают в таких случаях противоположное влияние на прочность связи . Так, радиоактивный изотоп иода помог изучить обмен в галоидзамещенных насыщенных углеводородах различного строения. Ионный механизм обмена изучался в системах К1 + К1 и водно-спиртовом растворе (90% этилового спирта +10% воды) механизм атомного обмена — в системах Р1 + Ь в циклогексановом растворе, причем атомы иода получались фотохимически, путем диссоциации молекул Ь. Опыты показали, что усложнение скелета алифатического углеводорода или переход от нормального строения к изомерному приводят к резкому уменьшению скорости ионных реакций и к увеличению скорости атомных. Так, если обмен иода в СНд идет целиком по ионному механизму, если, далее в п-иодистом пропиле СНз — СН, — [c.242]

    При участии в гомомолекулярном обмене двухатомных молекул, содержащих несколько изотопов, и при обмене двух изотопов молекул, состоящих более чем из двух атомов, появляются параллельные реакции изотопного обмена. Так, например, для изотопного обмена между молекулами элементарной серы имеем  [c.179]

    Синтез изотопным обменом может быть применен для введения в молекулы радиоактивных и стабильных изотопов вместо атомов, находящихся в подвижном положении. Атомы неорганических соединений обладают большой подвижностью, поэтому изотопным обменом метка может быть легко введена в любое положение соединения, кроме случая, когда он — центральный атом комплексного иона. В органических соединениях подвижными являются атомы галоидов, металлов, в отдельных случаях атомы серы. Атомы водорода подвижны в ОН-, НН-, 5Н-группах. Связь С—Н более устойчива и обмен таких атомов водорода возможен лишь в жестких условиях (щелочной или кислой средах). Атомы углерода в органических соединениях неподвижны, но в условиях протекания перегруппировок введение радиоактивных атомов углерода в молекулу изотопным обменом возможно. [c.511]

    СЕЛЕН. 8е. Химический элемент VI группы периодической системы элементов. Атомный вес 78,96. Имеются стабильные и радиоактивные изотопы С. Встречается в природе в виде минералов, содержащих серу, мышьяк, медь, серебро и др. По химическим свойствам близок к сере, но менее активен. Соединения С. ядовиты. Входит в состав многих растений и животных организмов, а также почв в незначительных количествах (тысячные-миллионные доли процента). Некоторые растения накапливают до десятых долей процента С. При отсутствии С. в почве растения заболевают. В некоторых растениях С. вытесняет серу из органических соединений (например, у видов семейства крестоцветных, у бобовых). С. входит в состав резервных белков зерновых злаков. Он образует соединения с белками крови, молока и др. В районах с большим содержанием С. в почве у животных нарушается обмен серы, развивается малокровие, которое сопровождается разрушением белков — кератинов, в результате чего происходит размягчение рогов и копыт, выпадение волос. Биохимическая роль С. слабо изучена. Изучаются методы синтеза и условия применения органических соединений С. в сельском хозяйстве. [c.257]

    Высокая геохимическая подвижность серы приводит к разделению ее изотопов в природных условиях. Наибольшие различия в изотопном составе серы наблюдаются между серой осадочных сульфатов (эвапоритов) и серой осадочных сульфидов. Главный процесс, приводящий к такому разделению изотопов серы, заключается в обменной изотопной реакции в морской воде в разлых окислительно-восстановительных условиях  [c.401]

    Примером использования метода изотопного обмена для определения равноценности атомных групп может служить исследование структуры зеленой [Сг2(504)з 6Н2О] и фиолетовой [Сг2(304)з- 18Н2О] модификаций сульфата хрома [286]. Изучение обмена сульфатных групп в этом комплексе с сульфат-ионами, содержащими изотоп серы-35, показало, что обмен протекает с различной [c.160]

    Дисульфидный обмен в полисульфидных полимерах подробно изучил Бертоцци[ 179]. Он исследовал влияние бутилхлорида, ди-бутилсульфида ибутилмеркаптана на понижение молекулярного веса полисульфидных полимеров, полученных из дихлорэтил-формаля и N3282. Автор считает, что обмен между полисуль-фидными полимерами и низкомолекулярными дисульфидами или тиолами происходит по ионному механизму. Гурьянова [180, 181] исследовала подвижность серы в полисульфидах и ускорителях вулканизации при помощи радиоактивного изотопа серы S . [c.245]


    Обмен серы в полисульфидах, гидролиз серы и химию полисульфидов изучали Кереш, Марош, Фехер и Шулек [255, 256] при помощи - изотопов S . Было показано, что происходит полный обмен атомами серы между полисульфидами и сульфидами при одновременном нахождении их в растворе. [c.359]

    Высказано предположение о том, что пентасульфид имеет кольцевую структуру 247. Изучен внутримолекулярный обмен атомов серы в ЫагЗ.Зж , меченном при помощи радиоактивного изотопа 248. Как показано, скорость обмена настолько велика, что не может быть прослежена разработанными аналитичеокими методами, требующими от нескольких секунд до нескольких ми- [c.592]

    Клетки Е. oli выращивались на среде, содержащ изотоп серы или углерода С . В некоторый момент клетки переносились на обычную питательную среду без изотопной метки и одповременно с помощью индуктора запускался синтез фермента Р-галактозидазы. Фермент выделялся в чистом виде из суммарного клеточного белка, затем измерялся его изотопной состав. Оказалось, что Р-галактозидаза содержит только нерадиоактивную серу или углерод, т. е. целиком синтезирована из веществ с изотопным составом той среды, на которой клетки жили в данный момент. В то же время все прочие белки клеток построены из аминокислот, меченных радиоактивными изотопами. Если бы распад и ресинтез белков действительно имел место, Р-галакто-зидаза должна была бы синтезироваться с исиользованием радиоактивных иредшественников — пептидов или аминокислот. Ничего подобного не наблюдалось. Синтезированные белки в живых клетках абсолютно не расщеплялись и оставались неизменными, пе вступая в обмен со средой. [c.447]

    Этот механизм подтверждается (А) — быстрым обменом радиоактпв-ЯЕ1М изотопом хлора между тионилхлоридом и ионами С1 в жидком сернистом ангидриде и (Б) — обменом радиоактивным изотопом серы между тионилхлоридом и тионилбромидом в жидком сернистом ангидриде, который протекает быстро и полностью даже при —50° С, Аргумент (А) наводит на мысль о том, что либо диссоциация идет по зфавнению (38), либо обмен проходит по механизму присоединения  [c.256]

    Обмен изотопов кислорода впервые наблюдал Льюис [612]. При пропускании сернистого ангидрида через воду, обогащенную тяжелым изотопом О , избыток последнего вымывается благодаря обмену с кислородом нормального состава из SO2. К тому же результату ведет пропускание СО2 через НдО [680]. Обмен кислорода воды с анионами ряда неорганических кислот был изучен сначала Титани и Гото [682] и Е. И. Донцовой и автором [681], а затем в нескольких других работах [683]. Эти ранние исследования носили качественный характер и могут служить лишь для ориентировки. Некоторые приводимые в них данные противоречивы или, как показала дальнейшая проверка, ошибочны из-за отсутствия в то время воды, достаточно обогащенной О , и несовершенства аналитических методик. В более новых исследованиях обмен кислорода и его кинетика изучены более тщательно. Автор с Л. В. Сулима [686] и с И. А. Высоцкой [687] систематически изучили обмен кислорода в кислотах фосфора, серы, галоидов и др. и в их солях. Обмен в соединениях серы и галоидов изучали также Гальперин и Таубе [698] и др. [c.306]

    При изучении природных соединений серы [990, 1291, 1655, 1759, 1976, 2005, 2008, 2009, 2044, 2084, 2087] были обнаружены колебания в распространенности изотопов и Большинство работ связано с определением содержания распространенность которой колеблется в пределах 8%. Колебания в изотопном составе серы были рассмотрены Макнамара и Тодом [1290]. В отличие от углерода, сера в метеоритах обладает постоянным изотопным составом [1462]. Авторы высказали предположение о том, что этот изотопный состав тождествен первоначальному изотопному составу серы в земных образцах, а определяемые в настоящее время значения отношения отражают биологическое и геологическое фракционирование изотопов серы. Значение содержания в изверженной сере [1292] наиболее близко к земной сере, не претерпевшей изменений в изотопном составе с момента образования земной коры, и близко к содержанию в метеоритах. Наиболее важной обменной реакцией в рассматриваемом выше фракцйонировании является реакция [c.106]

    В геохимическом плане s может рассматриваться в качестве аналога калия. В природе единственный стабильный изотоп цезия (его кларк в земной коре равен 6,5 Ю" %) за счет изова-лентного изоморфизма входит в состав кристаллической решетки минералов калия - слюд и полевых шпатов. Радиоцезий может прочно связываться с твердой фазой почв, внедряясь в меж-пакетное пространство глинистых минералов. Фиксированные в них ионы цезия в существенно меньшей степени переходят в почвенный раствор. По данным Гориной (1976), в серых лесных, луговых почвах и в черноземе s распределяется между обменной (9-15%), необменной кислоторастворимой (4-6%) и фиксированной (81-85%) формами. В легких супесчаных почвах доля фиксированных форм снижается до 60 % и увеличивается содержание обменной (28 %) и кислоторастворимой (12 %) форм. Считается, что роль органического вещества в сорбции s невелика. [c.272]

    Теоретические расчеты показали, что в равновесных изотопнообменных реакциях тяжелый изотоп 3 предпочтительно накапливается в окисленных соединениях серы в следуюш ей последовательности S , SOj, 30з , sol - Константа разделения тем больше, чем больше различие в степени окисления соединений серы, между которыми устанавливается равновесие, и меньше температура. При повышении температуры константа стремится к единице. Максимальная константа (1,077 при 25° С) должна быть при равновесии сульфидного и сульфатного ионов. Однако обмен между этими формами серы экспериментально был обнаружен только при температурах 200° С и выше, при которых величина константы равновесия не превышает 1,03. [c.8]

    Наилучшим методом разделения легких элементов оказался химический обмен. Поэтому он был успешно применен для разделения изотопов водорода, бора, углерода, азота, кислорода и серы. Но для элементов с более высоким атомным весом коэффициенты разделения при химическом обмене слишком близки к единице, и разделения практически не происходит. Если обменные реакции, происходяидие в середине колонки, почти обратимы и на их протекание затрачивается очень мало энергии, то реакщш на обоих концах колонки необратимы и требуют очень большого расхода химических реагентов. В производстве тяжелой воды этих трудностей можно избежать, применив двухтемпературный процесс, при котором флегма получается в соседней колонке при температуре, отличной от температуры первой колонки. Но этот л етод требует установки вчетверо большего размера. Флегма оказывается особенно экономичной, если она создает продукты, имеющие сбыт, такие, как Н9504, получающаяся при обогащении обменом между N0 и НКЮз, или электролитические водород и кислород, образующиеся на заводе по производству тяжелой воды в Трейле, [c.363]

    Столбец 2. Реагирующие вещества. Приведены химические формы реагирующих веществ, участвующих в обмене. Звездочка после символа обменивающегося элемента в формуле обозначает, что реагирующее вещество было мечено изотопом данного элемента звездочки в обеих формулах обозначают, что проведены, по крайней мере, 2 серии измерений. В некоторых опытах индикатор вводился в одно из реагирующих веществ, а в других опытах — во второе ртсутствие звездочки показывает, что не имеется сведений о местоположении меченого атома. [c.263]

    Исследования Замечника и многих других (см. выше) позволили нарисовать весьма правдоподобную картину той роли, которую РНК играет в биосинтезе белков. Однако зависимость белкового синтеза от скорости синтеза и распада РНК пока еще трудно понять. Так, например, наряду с системами, в которых между скоростью синтеза РНК и интенсивностью белкового синтеза существует, по-видимому, зависимость, известны и такие системы, в которых скорости синтеза белка и РНК как будто не связаны между собой. Печень представляет собой очень своеобразный пример системы, в которой при изменении аминокислотного состава пищи наступают довольно сложные сдвиги в метаболизме РНК. Мы уже упоминали (стр. 111) о том, что при скармливании крысам пищи с недостаточным содержанием белка их печень быстро теряет белки, РНК и фосфолипиды. Следовательно, состав диеты оказывает регулирующее воздействие на метаболизм каждого из перечисленных соединений. В случае РНК оно было подробно изучено в серии опытов, проведенных Манро и его сотрудниками. В первых своих опытах они установили [140], что ног.лощение Р рибонуклеиновой кислотой, по-видимому, зависит от энергетического фонда пищи. Резкие же колебания в количестве съеденного белка не оказывали влияния на включение Р данные эти согласовывались с более ранними наблюдениями других авторов [141]. Казалось бы, эти факты указывают на отсутствие связи между содержанием белка в пище и скоростью синтеза РНК. На первый взгляд это трудно увязывается с теми значительными изменениями количества РНК в печени, которые наступают при сдвигах в белковой диете. Поэтому было необходимо выяснить, каким образом поглощение белка может влиять на количество РНК, не изменяя при этом скорости синтеза. Для этого бы.ти поставлены новые опыты, в которых изменения в обмене РНК и белка были прослежены с помощью Р и 2-С -глицина [142]. Оказалось, что РНК поглощает изотопы независимо от содержания белка в диете только в том случае, ес.ли животных кормят на протяжении всего опыта. Если же крыс после обильной белковой пищи заставляют голодать, то включение Р в РНК падает очень заметно еще сильнее снижается включение глицина в РНК. Исходя из различных данных, можно думать, что это явление [c.288]

    Применение теории сольво-систем к химии жидкого диоксида серы позволяет объяснить реакции подобного типа. К сожалению, постулированное образование ионов 50 + в растворах тионилгалогенидов экспериментально не подтверждается. Найдено, что в растворах тионилбромида и тионилхлорида в диоксиде серы, меченном изотопом обмен этим изотопом практически не наблюдается (период полуобмена равен двум годам и более). Если бы протекали реакции [c.197]

    На рис. 24 приведены чисто вращательные спектры СОг и С5г. Интенсивные линии соответствуют чисто вращательным переходам в основное колебательное состояние ( 1 = Уг = 1 з=0) согласно правилу отбора А/ = +2. Серия слабых линий интерпретируется как чисто вращательный спектр в возбужденном состоянии 01Ю с тем же правилом отбора Л/ = +2. На рис, 32 приведена диаграмма вращательных уровней энергии для этих колебательных состояний, а также переходы, которые обусловливают чисто вращательный спектр. Основным электронным состоянием молекул СОг и С5г является 2 -состояние, поэтому обе молекулы симметричны и имеют центр симметрии (точечная группа Ооок). Поскольку спины эквивалентных ядер нулевые (рассматриваются только изотопы Ю и 5 как наиболее распространенные), все вращательные уровни, антисимметричные по отношению к обмену эквивалентных ядер, будут отсутствовать [112, 113]. Для основного колебательного состояния это приводит к отсутствию всех вращательных уровней с нечетными значениями /, поэтому чисто вращательный спектр основного состояния состоит только из линий с четными значениями / и интервалом между линиями 8В ( 3,2 см для СОг и 0,87 см для С5г). [c.222]

    Легко видеть, что феноменологическая теория термодиффузионных приборов может быть построена на тех же принципах, что и теория фракционных колонок. Такая теория была развита в одной из прежних работ автора и Скарре [21 применительно к разделению изотопов водорода и кислорода при разгонке воды в многотарелочных колонках. Тогда же указывалось на то, что эта теория может быть непосредственно применена к любым случаям методического фракционирования идеальных смесей в непрерывно действующих многоступенчатых агрегатах, образующих замкнутую систему . В частности, это относится к фракционированию изотопов в колонках путем обменных реакций или адсорбции, в серии насосов Герца и т. д. В настоящей работе эта теория, первоначально развитая для малых концентраций концентрируемого компонента, дана в более общем виде. Далее эта теория применена к термодиффузионному методу, причем показано, что она находится в хорошем согласии с опытом и может служить основой для расчета и проектирования термодиффузионных приборов. [c.259]


Библиография для Обмен изотопов серы: [c.511]   
Смотреть страницы где упоминается термин Обмен изотопов серы: [c.106]    [c.85]    [c.197]    [c.200]    [c.6]    [c.81]    [c.13]    [c.29]    [c.31]   
Смотреть главы в:

Химия изотопов Издание 2 -> Обмен изотопов серы

Изотопы в органической химии -> Обмен изотопов серы




ПОИСК





Смотрите так же термины и статьи:

Обмен серы



© 2024 chem21.info Реклама на сайте