Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез изотопным обменом

    В настоящее время разработано много методов синтеза меченых соединений прямой химический синтез, синтез изотопным обменом, синтез методом атомов отдачи, синтез в молекулярных и ионных пучках, синтез при р-распаде и биосинтез. [c.469]

    В производственной практике основное значение имеют прямой химический синтез, биосинтез и синтез изотопным обменом. [c.469]


    Синтез изотопным обменом [c.487]

    СИНТЕЗ ИЗОТОПНЫМ ОБМЕНОМ [c.487]

    Синтез изотопным обменом 489 [c.489]

    Следует также упомянуть возможность синтеза изотопным обменом металлорганических соединений, например ртутноорганических соединении, который осуществляется по реакции типа  [c.490]

    Синтез путем изотопного обмена. В ряде случаев синтез меченых органических соединений удобно проводить, используя реакции изотопного обмена. При этом оказывается возможным вместо хи-мического синтеза с участием радиоактивного вещества провести синтез неактивного соединения, в которое затем уже ввести метку посредством изотопного обмена. Синтез методом изотопного обмена имеет преимущества перед химическими методами синтеза при получении меченых соединений сложного состава, а также при не- пользовании в качестве индикатора короткоживущего изотопа. Общие особенности синтеза меченых соединений путем изотопного обмена были рассмотрены в гл. П1, 7 поэтому здесь кратко остановимся только на специфике синтеза изотопным обменом органических соединений. [c.300]

    Синтез изотопным обменом может быть применен для введения в молекулы радиоактивных и стабильных изотопов вместо атомов, находящихся в подвижном положении. Атомы неорганических соединений обладают большой подвижностью, поэтому изотопным обменом метка может быть легко введена в любое положение соединения, кроме случая, когда он — центральный атом комплексного иона. В органических соединениях подвижными являются атомы галоидов, металлов, в отдельных случаях атомы серы. Атомы водорода подвижны в ОН-, НН-, 5Н-группах. Связь С—Н более устойчива и обмен таких атомов водорода возможен лишь в жестких условиях (щелочной или кислой средах). Атомы углерода в органических соединениях неподвижны, но в условиях протекания перегруппировок введение радиоактивных атомов углерода в молекулу изотопным обменом возможно. [c.511]

    При проведении исследований с мечеными соединениями основными проблемами являются синтез, выделение и очистка селективно меченного аналога с высокой изотопной чистотой, т.е. с достаточно высоким соотношением меченого материала к немеченому или частично меченому. При выборе метода синтеза определяют, какой атом и в какой группировке хотят селективно заместить на его изотоп, и, кроме того, учитывают, чтобы в процессе синтеза не происходил изотопный обмен, который может приводить к уменьшению изотопной чистоты. [c.76]


    Если изотопный обмен можно с уверенностью применять для синтеза многих меченых соединений, то другие специальные методы, основанные на использовании энергии ядерных реакций, нахо- [c.12]

    При опытных синтезах пирита с применением FeS, меченного радиоактивной серой, измерялась активность отогнанной избыточной серы. Она составляла от 0,5 до 2,5% от всей взятой активности. Это указывает на то, что в данных условиях проходил в некоторой степени изотопный обмен между серой в газовой фазе и серой в сульфиде. [c.48]

    М. с. получают хим. синтезом (при этом один из исходных реагентов содержит метку), изотопным обменом, с покойся атомов отдачи (см. Горячие атомы). [c.341]

    Схемы синтеза, предложенные Гориным и Каганом с сотрудниками, подтверждены Рогинским, Виноградовой и Кейер [255], которые исследовали реакцию Лебедева с помощью меченых атомов. Были изучены а) превращения опирта и альдегидов в адсорбционном слое, б) изотопный обмен спирта с альдегидами и в) роль кротонового альдегида. Показано, что дивинил образуется через конденсацию ацетальдегида в кротоновый альдегид, восстановление последнего в кротиловый спирт и дегидратацию спирта до диена. [c.247]

    Сопоставление скоростей должно, конечно, проводиться при равных степенях заполнения поверхности катализатора адсорбированным азотом. Соответствующая обработка экспериментальных данных, приведенная А. И. Горбуновым, показала, что на железе, как чистом, так и про-мотированном окисями калия и алюминия, скорость изотопного обмена в молекулярном азоте приблизительно в десять раз ниже скорости синтеза аммиака, что свидетельствует о справедливости механизма Темкина — Пыжева [23]. Пониженная, по сравнению с синтезом, скорость обмена указывает на ограниченную подвижность адсорбированных атомов азота.. В случае кобальта скорость обмена близка к скорости синтеза, для никеля же скорость обмена почти в 100 раз превышает скорость синтеза. Это можно было бы объяснить, в соответствии со схемой Хориути и сотр. [24], малой скоростью стадии гидрирования адсорбированного азота, но надо признать маловероятным предположение о меньшей скорости гидрирования адсорбированного азота на никеле по сравнению с железом. Возможно, что на никеле изотопный обмен молекулярного азота протекает не по адсорбционно-десорбционному, а по цепному механизму и его скорость может быть значительно больше скорости адсорбции. [c.136]

    Более вероятным нам кажется предположение, что на никеле синтез аммиака и изотопный обмен азота не имеют общей стадии. Возможно, что изотопный обмен на никеле осуществляется путем взаимодействия адсорбированного атомарного азота с молекулярным азотом с регенерацией атома азота на поверхности. В этом случае скорость обмена может значительно превышать скорость сорбции азота. На возможность протекания изотопного обмена на никеле по другому механизму, чем на железе и кобальте, указывает значительно более низкая величина энергии активации. [c.197]

    Железо-армко после окончания опытов по изотопному обмену было испытано в отношении синтеза Н. М. Морозовым в лаборатории М. И. Темкина. [c.197]

    Для теории катализа существенно знать, в каких случаях хемосорбция сопровождается атомизацией или радикализацией. Для этой цели рядом авторов исследовался гетерогенный гомомолекулярный изотопный обмен. В частности, таким путем пытались разрешить вопрос о состоянии хемосорбированной молекулы азота при контролирующем этапе синтеза аммиака на металлических катализаторах. При этом принималось, что при хемосорбции азота, происходящей с диссоциацией, из смеси молекул N2 с молекулами N2 должны образовываться молекулы дд пор, пока не установится соотношение концентрация этих трех изотопных форм, соответствующее термодинамическому равновесию реакции (8) [c.20]

    Каталитический изотопный обмен в синтезе меченых веществ [c.26]

    Вторая группа своеобразных методов синтеза соединений необычного изотопного состава основана на изотопном обмене. В этом случае получение меченых соединений проходит через нормальную последовательность трех типов реакций схемы I, но при реакциях третьего типа прямой синтез меченых веществ методами, принятыми в синтетической химии, заменяется введением соответствующих изотопов в готовые соединения нормального изотопного состава при номощи изотопного обмена. Для сложных органических соединений такой путь часто представляет большие упрощения, позволяя использовать продукты обычного синтеза. [c.417]

    Изотопный обмен находит применение и при синтезе меченых соединений кислорода и серы. Сомнительны перспективы нахождения каталитических методов прямого изотопного обмена атомов углерода. Продвижение в этом направлении было бы очень желательным. Следует упомянуть также о внутримолекулярном изотопном обмене, используемом при некоторых методах синтеза. [c.417]


    Реакции с участием молекулярного водорода (кроме окисления его кислородом) 1449 орто-пара-превращения, рекомбинация атомов водорода, изотопный обмен гидрирование гидрирование деструктивное, гидрогенолиз восстановление водородом синтезы на базе смеси НгЧ-СО (также HjO+ O, Hj+ Oj) [c.1446]

    Проведенная обратная реакция с меченным по сере дибутилсульфидом (получен обычным методом синтеза через бромистый бутил и сернистым натрий) и нерадиоактивным сернистым натрием подтвердила изотопный обмен. [c.104]

    МЕЧЕНЫЕ СОЕДИ11ЁПИЯ, хим. соед., содержащие стабильные или радиоактивные нуклиды и используемые в качестве изотопных индикаторов. Большое число М. с. производят пром. способами, однако их можно получить и лаб. методами из меченого сырья. Для получения М. с., содержащих радиоактивные нуклиды, применяют, помимо обычного хим. синтеза, изотопный обмен, р-ции с участием горячих атомов, биосинтез и нек-рые др. спец. приемы. При выборе метода приготовления следует учитывать, что один метод позволяет получить М.с., содержащее атом-метку в строго определенном положении (напр., хлорбензол, содержащий атом только в положении 1), другие-М. с., в к-ром положение метки не фиксировано (напр., меченная радионуклидом глюкоза, получаемая биосинтезом с использованием в качестве исходного сырья СОз). В нек-рые простые соед., характеризующиеся высокой радиац. устойчивостью, радиоактивную метку можно ввести, облучая в-во потоком нейтронов, протонов или др. частиц. Напр., в СВг радиоактивную метку можно ввести облучением нейтронами Вг( , у) Вг. [c.78]

    М. с. нолучают хим. синтезом (нри этом один из исходны реагентов содсрасит метку), изотопным обменом, с помощью атомов отдачи (е м. Г(У)Ячпе атомы). [c.341]

    С помощью авторадиографии можно идентифицировать участки пов-сти образца, способные к повыш. изотопному обмену с окружающей средой, изучать поведение легирующей добавки при синтезе монокристаллов или при получении сплавов, выявить характер покрытия на волокнах, получать информацию о локализации лек. препаратов в органах и т.д. Напр., в в-во, к-рое наносят на волокно в качестве покрьггия, предварительно вводят радионуклид. После нанесения покрытия авторадиограмма такого волокна позволяет определить, является ли покрытие сплошным, каковы его толщина и форма. На основании этих данных можно оценить эффективность прил еняемой технологии нанесения покрьггия. [c.167]

    Гомогенные реакции (процессы) I/I158 4/415 5/465. См, также Гомогенные системы алкилирование 2/380 газификации твердых топлив 1/881 газофазные 1/1158 2/850, 851 гидрирование 2/670 3/84, 737 гидролиз 2/340 горение 1/1169, 1170 детонация 2/46, 67 диеновый синтез 2/101, 102 н реология 4/487 и эффект клетки 2/810, 811 изотопный обмен 2/387, 388 каталитические 1/1158-1161 2/688-691, 756, 757 5/333, 712, 713. См. также Гомогенный катализ [c.585]

    В тех случаях, когда необходимое меченое соединение невозможно получить непосредственным облучением неактивного вещества, приходится прибегать к тем или иным методам синтеза. Обычный химический синтез, легко осуществляемый в наиболее простых случаях, становится чрезвычайно трудоемким при получопии сложных, особенно органических соединений. В этом отношении представляют интерес специальные методы синтеза, основанные на изотопном обмене, радиационно-химических процессах, реакциях горячих атомов и т. п. [7]. Это совершенно новая и весьма перспективная область исследования, возможности которой, невидимому, выходят далеко за рамки задачи получения меченых соединений. [c.12]

    Большое значение для получения меченых соединений имеет метод изотопного обмена. Если обмен происходит легко, то быстро и просто удается получить требуемое меченое соединение или выделить радиоизотоп в чистом виде из сложной смеси. Иногда изотопный обмен облегчается и ускоряется под действием радиоактивного излучения применяемого изотопа или внешнего источника излученин. Однако в этом случае обмен осложняется радиационно-химическими процессами разложения исходного соединения и синтеза из образующихся при этом радикалов и остатков ряда новых меченых п немеченых соединений. [c.12]

    В заключение следует подчеркнуть, что метод получения органических меченых соединений зависит преяаде всего от требований, предъявляемых к меченому препарату. Только метод химического синтеза дает возможность получать вещества со строго определенным положением меченого атома. Вместе с тем изотопный обмен в ряде случаев (атомы давая возможность вводить метки [c.139]

    Наряду с синтезом, биосинтезом, изотопным обменом, методом непосредственного облучения и другими подобными методами, некоторые меченые препараты можно получить электрохимическим путем. Этот метод по сравнению с другими обладает преимуществом в части перспектив организации автоматического идистан-ционного управления процессом. [c.170]

    Одним из возможных путей получения меченых соединений, наряду с реакциями синтеза, являются реакции изотопного обмена. До сих пор в связи с малой подвижностью углеродных атомов в большинстве органических соединений реакции изотопного обмена не полу П1ли широкого применения. Однако метоксильная группа в молекуле метилметакрилата должна обладать относительно большой подвижностью, поэтому было решено для получения метилметакрилата—воспользоваться одним из наиболее простых способов—изотопным обменом (изотопной переэтерифика- [c.183]

    Отщепление радиоактивной углекислоты при нагревании этих соединений в отсутствие кислорода в газовой фазе показывает, что пленка содержит не только атомы углерода, но и атомы кислорода. Еще до окончания образования пленки каталитическая активность серебра изменяется, после чего она достигает стационарного значения. Следует отметить, что наблюдавшееся торможение окисленртя этилена образующейся окисью этилена связано с блокирующим действием пленки. На стационарной поверхности катализатора тормозящее действие окиси этилена отсутствует. Химическая природа пленки неясна. Пленка очень медленно окисляется при температурах синтеза и с трудом снимается полностью окислением при 260°. Изотопный анализ показывает, что при введении в смесь меченых кислородных соединении пленка образуется практически целиком из этих соединений и не вступает в изотопный обмен с газовыми молекулами. [c.72]

    Изменение активности при промотировании. Во многих случаях механизм промотирования заключается в синтезе новых АКЦ на поверхности. Так, например, по данным Борескова и Горбунова [133] введение в никелевый катализатор 2% хрома ускоряет изотопный обмен в азоте без снижения энергии активации (19 500 кал X Хмоль- ) в 4,5 раза, 5% —в 10 раз. Поскольку активность центров не увеличивается ( = onst), причина может быть лишь в увеличении числа АКЦ. Но увеличение числа АКЦ в 10 раз показывает, что не только вся поверхность непромотированного никеля не была активной, но что АКЦ составляли никак не больше 10% ее. [c.93]

    Сопоставлены скорости изотопного обмена азота и скорости синтеза (разложения) аммиака. Установлено, что на железном непромоти-рованном катализаторе и кобальте скорость синтеза аммиака по величине близка к скорости изотопного обмена. Если синтез и обмен протекают через общую стадию, то лимитирующим этапом синтеза аммиака на обоих катализаторах является диссоциативная хемосорбция азота. Однако на дважды промотированном железном катализаторе скорость обмена значительно меньше скорости синтеза, что, вероятно, связано с недостаточной нодвижиостью хемосорбированных атомов азота. [c.198]

    Kaтaлитn J киe реакции водорода II. Каталитическое окисление 1П. Каталитический крекинг углеводородов IV. Прочие каталитические реакции Изотопный обмен VI. Изучение катализаторов изотопными методами VII. Изотопные эффекты 1И. Физические и физико-химические методы исследования IX. Синтезы меченых веществ. [c.3]

    Данный первых работ были противоречивы из-за неучета большой чувствительности гетерогенной каталитической реакции (8) к кислороду и воде, отравляющим изотопный обмен при концентрациях, практически не сказывающихся на скорости каталитического синтеза аммиака на тех же катализаторах. Особенно тщательно этот процесс был изучен на металлическом рении, нричем были найдены условия, нри которых синтез идет, а гомомолекулярный обмен отсутствует [108]. Отсюда был сделан радикальный вывод об отсутствии атомизации азота при его адсорбции, с которой начинается синтез. Поэтому для начала синтеза следует принять схему (9а) вместо схемы (96). [c.21]

    До сих пор изотопный обмен, как метод синтеза, нрименялся преиму-щес.твенно нри приготовлении соединений с необычным изотопным составом мо водороду. Водород, связанный с элементами, имеющими незанятые электронные пары О N S и т. д., обычно легко обменивается и без катализаторов [45]. Для водорода связей С—Н желаемый результат легко может быть получен нри помощи кислотных и основных катализаторов-иереносчиков, позволяющих тонко регулировать направление и глубину обменной реакции [19]. Таким путем тритий и дейтерий можно вводить в сколь угодно сложные молекулы, включая молекулы до сих пор не синтезированных искусственно сложных природных соединений. Пока- не использованы богатые bo3mohiho th гетерогенного каталитического обмена на металлах, нодготовленные работами последнего времени с металлическими и окисными катализаторами [20]. [c.417]

    Для водорода, кислорода, галогенов и серы весьма перспективно дальнейшее развитие введения метящих атомов каталитически регулируемым изотопным обменом. Для углерода, азота было бы весьма желательно изыскание каталитических методов введения этих атомов в готовую молекулу изотопным обменом — в соотЕетствующие группы и радикалы (СОг СПд КНа и т. д.) для этого в ряде специальных методов синтеза имеются достаточные возможности. Перспективно более широкое использование каталитического изотопного обмена при изомеризации. Можно ожидать распространения в этой области радиационно-химических и электрохимических методов. [c.421]

    Изотопный обмен бо.лее универса.леи, чем органический синтез. По.ль-зуясь одним н т( м же деитерирующим рс агентом и уже готовыми обычными [c.430]

    В виде свободных металлов хром, молибден, вольфрам и уран катализируют в основном реакции, протекающие с участием водорода к ним относятся орто-пара-преврашше водорода [14], рекомбинация атомов водорода [9—11]. диссоциация водорода [822]. изотопный обмен дейтерия с водородом [977], углеводородами [15, 473, 810, 811] и кислородсодержащими соединениями [807], разложение [468, 823, 824] и синтез [813, 999, 1000] аммиака, дегидроконденсация метана [473] и некоторые другие. [c.577]

    В некоторых случаях комбинируют различные радиохимические методы меченого синтеза. Например, для приготовления органических бромидов, содержащих короткоживущий бром Вг, предложен быстрый и универсальный способ синтеза, сочетающий эффект Силарда — Чалмерса с изотопным обменом. Бромистый этил облучается нейтронами радиоактивный бром, выбитый из молекулы, экстрагируется водным раствором КВг. Затем раствор меченого бромистого калия приводится в контакт с органическим бромидом в присутствии трехбромистого алюминия, который легко обменивается бромом как с неорганическим, так и с органическим бромидами и способствует перераспределению активности между этими молекулами  [c.176]

    Если в молекуле вещества надо заменить на дейтерий один из нескольких равноценных атомов водорода, приходится воспользоваться синтетическими методами, так как в обменной реакции будут участвовать все однотипные атомы водорода. При получении дейтеросоединеиий изотопным обменом, как правило, расходуется большее количество дейтерирующего реагента (например, тяжелой воды), чем при синтезе, так как концентрация дейтерия снижается за счет протия исходного вещества. Поэтому, чтобы приготовить возможно более чистое в изотопном отношении вещество, приходится несколько раз повторять операцию дейтерообмена, причем желательно возможно полнее удалять реагент, участвовавший в предыдущей операции. Это не всегда просто сделать. Для реакций изотопного обмена оптимальным условием является гомогенность системы, однако нередко удается дейтерировать и плохо растворимые вещества. [c.374]


Смотреть страницы где упоминается термин Синтез изотопным обменом: [c.487]    [c.5]    [c.6]    [c.487]    [c.317]    [c.431]   
Смотреть главы в:

Радиохимия -> Синтез изотопным обменом




ПОИСК





Смотрите так же термины и статьи:

Изотопный обмен

Обмен изотопный Изотопного обмена



© 2025 chem21.info Реклама на сайте