Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы задач, решаемых с помощью ДОВ и КД

    В этом уравнении фигурирует еще одна величина, указанная в условии задачи,— процентная концентрация раствора. Каждый тип задач имеет свои особенности составления уравнений. В нижеследующих разделах даны рекомендации к способам составления системы уравнений для решения наиболее типичных задач по химии. Составленную систему уравнений приводят к одному уравнению, решив которое, находят искомые величины. Правила решения уравнений описаны в учебниках алгебры. Преобладающее большинство задач по химии, предлагаемых в сборниках для средних школ, можно решить с помощью одного линейного уравнения. Решив уравнение, формулируют ответ на вопрос, поставленный в задаче. [c.8]


    Для однопараметрических структур такого типа задача решается при помощи кривых, выражающих зависимость структурного фактора Р кЫ) от значения искомого параметра л . Кривые строятся для 10—12 отражений на одном общем графике. Сопоставляя экспериментальные значения структурных факторов этих отражений друг с другом, нетрудно выделить тот узкий интервал графика, который удовлетворяет соотношениям между значениями I Рз(НЫ) 1. Этот метод аналогичен описанному на стр. 227. Его отличие лишь в том, что используются не только отражения разных порядков от данной серии плоскостей, но любые выбранные отражения. Интервал значений х окажется, естественно, тем уже, чем больше отражений будет привлечено. В современном структурном анализе разработаны другие, более удобные и прецизионные методы уточнения координат, но требующие привлечения всех отражений. [c.241]

    При выводе уравнений процесса нагревания (охлаждения) вещества в реакторах объемного типа обычно исходят из задачи с сосредоточенными параметрами [17, 26, 37]. Лишь в работе [39] для случая обогрева содержимого реактора с помощью гипотетического греющего элемента — горизонтальной трубки с теплоносителем и при отсутствии перемешивания принята модель с распределенными параметрами. При этом задача решена только для случая неизменности теплофизических свойств вещества в процессе нагревания. Но и в этом случае, как показывают расчеты, расхождения с результатами, полученными из условий сосредоточенности параметров, незначительны. [c.39]

    В заключение параграфа подытожим, какие задачи могут решаться с помощью уравнений кинетических кривых. Фактически речь идет о трех типах задач. [c.292]

    Задачи подобного типа удобно решать с помощью системы уравнений, Т- е. алгебраическим способом. Пусть число граммов железа в смеси равно X, а число граммов цинка равно у. Количество водорода в литрах, [c.322]

    При математическом описании движения жидкостей возникают задачи двух типов. Задачи первого типа относятся главным образом к истечению несжимаемой жидкости из баков, прохождению ее по трубопроводам, через клапаны и другие устройства. Подобные гидравлические цепи наиболее просто и удобно описываются при помощи уравнения Бернулли и закона сплошности. Задачи второго типа возникают при сжимаемости жидкости или содержащих ее сосудов и трубопроводов. В данном случае возможны вибрация, образование звуковых волн и их распространение в жидкостях или трубопроводах. Задачи этого типа решают при помощи уравнений волновых движений. В результате оказывается возможным предсказать появление бегущих или стоячих волн в трубопроводах и технологических аппаратах. [c.11]


    С помощью рекомендуемого метода и эта задача решается просто и правильно. Для этой цели при обкатке двигателя одного типа были проверены три присадки присадка № 1, содержащая серу, присадка № 3, содержащая серу, хлориды и свинец, и присадка № 2, проверенная уже ранее и способствовавшая значительному снижению износа двигателей. [c.56]

    Итак, имеется моносахарид или его метилированное производное. Установить строение — значит решить две группы задач. Прежде всего надо выяснить длину углеродной цепи, природу, число и расположение функциональных групп для метилированных сахаров, в частности,— число и положение метильных групп. Все это в совокупности иногда называют бутлеровской структурой. Затем нужно установить конфигурацию асимметрических центров, т. е. решить задачу того же типа, которую решал Эмиль Фишер для глюкозы, маннозы и арабинозы. В этой главе мы рассмотрим пути решения задач первой группы одним наиболее общим и употребительным в современной науке методом — с помощью осколочной масс-спектрометрии. [c.66]

    Универсальным приемом исследования в молекулярной биологии и примыкающих к ней биологических дисциплинах сейчас является использование природных соединений, меченных радиоактивными изотопами. С его помощью удается решить огромное число типов задач, связанных с прослеживанием путей превращений тех или иных ве- [c.116]

    Для того чтобы приступить к технико-экономическому расчету, предварительно нужно выбрать наиболее вероятные типы аппаратов, с помощью которых можно успешно решить данную конкретную задачу. Опытный технолог или проектировщик эту задачу может решить интуитивно, основываясь на накопленном им большом практическом опыте. Для того чтобы более целенаправленно решать подобную проблему, в табл. 16.2 рассматриваются основ- [c.82]

    С помощью стилоскопов и стилометров могут решаться три типа задач  [c.409]

    Применение титрующих анализаторов. С помощью титрующих анализаторов лабораторного и промышленного типа можно решать самые разнообразные задачи. [c.7]

    Большую группу возможностей открывает количественный спектральный анализ. Действительно, если по какой-либо области спектра может быть определена концентрация концевых групп, то эти.м задача решается. Здесь возможно применение оптической спектроскопии в любой области спектра (инфракрасной, видимой, ультрафиолетовой), а также различных методов радиоспектроскопии, например, протонного магнитного резонанса, в зависимости от конкретного типа концевых групп. Учитывая высокую точность спектральных методов, можно ожидать, что в дальнейшем с их помощью удастся определять более высокие молекулярные веса, чем в случае применения химических методов. [c.320]

    Если реакционная способность функциональной группы зависит от того, прореагировали ли другие группы данного мономерного звена, подход должен быть несколько иной. Подобные задачи решал Гордон [10—12] прп помощи эффекта замещения в первой сфере , задавая определенный вид зависимости величины вероятности реакции от числа замещенных групп. Обычно используют линейный закон для свободной энергии или логарифма константы скорости. Это совершенно излишнее ограничение. Анализ таких систем просто проводится в терминах типов связей. Соотношения же между вероятностями образования соответствующих связей задаются кинетикой процесса [13]. [c.58]

    Решение. Задачи такого типа легко решаются с помощью диагональной схемы ( правила креста ). [c.94]

    Происхождение образца. Для спектроскописта очень важно хорошо знать происхождение исследуемого образца. Должен быть известен метод получения образца, а также где и кем он был получен. Часто трудные задачи решались уже с помощью классических методов анализа. Такие простые характеристики, как цвет, тоже дают некоторые необходимые указания знающему спектроскописту. Например, зеленый цвет показывает, что в состав духов входят концентраты ладанника или лаванды. Имея достаточный навык в распознавании запаха, можно часто но наиболее характерным запахам классифицировать неизвестное вещество и направить исследование на идентификацию определенных типов химических соединений. [c.141]

    Огромное количество задач, связанных с дифференциальными уравнениями, а также прикладных задач нового типа требует создания численных методов. Существует очень распространенное заблуждение по поводу последних. Многие думают, что решив справиться с задачей с помощью численных методов, можно, забыв о математике, тут же приняться за вычисления, если под рукой есть компьютер. Помнится, была даже статья Дело о разводе в одной из газет. Суть ее состояла в том, что с появлением компьютеров физики наконец освобождаются от необходимости обращаться за помощью к математикам, они разводятся с математиками. [c.129]


    По граничному размеру могут быть ориентировочно подобраны тип аппарата и его аэродинамическая схема, обеспечивающие наиболее эффективную классификацию в этом диапазоне размеров частиц, а по характеристикам т и е теоретической кривой — рациональный режим классификации, обеспечивающий их достижение. Если обеспечить теоретическую кривую разделения на располагаемом классе типов и типоразмеров классификаторов не удается, то можно попытаться решить эту задачу с помощью каскада классификаторов. [c.101]

    Для получения 50%-ного раствора КОН к 250 г 90%-ного раствора надо прибавить 333,3 г 20%-ного раствора КОН. Задачи такого типа легко решаются при помощи диагональной схемы или правила креста . Диагональная схема строится так точкой пересечения двух отрезков прямой обозначают свойства смеси. [c.70]

    Решается эта задача при помощи определенного типа неравенств, связывающих структурные амплитуды разных отражений, или на основе некоторых статистических соотношений между амплитудами. После выяснения знаков структурных амплитуд нахождение координат атомов не представляет принципиальных затруднений. Обычно эта вторая стадия исследования проводится методом рядов Фурье, т. е. с помощью соотношения (2). Максимумы электронной плотности определяют координаты атомов. [c.182]

    Кроме того, на примере оптимизации реактора изложен подход к решению реальной вариационной задачи с ограничениями типа неравенств. Решение этих задач представляет собой, вообще говоря, весьма сложную проблему. Однако задачу оптимизации реактора идеального вытеснения все же можно решить, если принять во внимание некоторые свойства оптимизируемого процесса. К сожалению, и общем случае не представляется возможным указать достаточно удобные методы решения вариационных задач с ограничениями тйпа неравенств. Поэтому для каждого конкретного процесса приходится искать са.мый удобный прием или же решать задачу с помощью других методов, например динамического программирования или принципа максимума, более приспособленных для решения таких адач. [c.222]

    К группе алгоритмов преобразования данных относятся также алгоритмы выбора технологического оборудования. Выбор оборудования при известном его типе обычно осуществляется по фиксированному набору определяющих параметров и является в значительной мере автономным процессом в том смысле, что он в большинстве случаев не зависит от характеристик проектируемого процесса. Гораздо сложнее задача определения необходимого типа оборудования, обеспечивающего минимальные затраты при заданной производительности. В лучшем случае эта задача решается качественно с помощью логического анализа особенностей реализуемого технологического процесса и накопленного опыта, в другпх же случаях выбор типа оборудования производится в значительной степени интуитивно и в соответствии со сложившимися традициями. В то же время желательно, чтобы эта задача решалась численно с учетом количественных характеристик как самого оборудования, так и технологических потоков и окружающей среды. [c.230]

    Применение чисел переноса углубляет наши представления о действительных процессах, происходящих в электрохимических системах, и позволяет решать ряд важных для технологии задач. С помощью чисел переноса можно судить, кроме того, о строении некоторых молекул. Так, например, было показано, что в смесях двух солей типа K N и К4ре(СМ)е при пропускании тока ионы, содержащие железо, концентрируются у анода. [c.105]

    В ходе опытов предусматривалось прослеживание за изменением коэффициента проницаемости образца при последовательной фильтрации различных жидкостей (газ, нефть, пластовая вода, пресная вода и растворы ПАВ различной концентрации). Поэтому было особенно важным исключить влияние посторонних факторов на величину коэффициента проницаемости при фильтрации по образцу различных жидкостей в течение довольно длительного времени (3—6 дней). К этим факторам относятся механические примеси в жидкостях и продукты коррозии, получающиеся в результате контакта рабочих жидкостей с металлическими деталями установил. Если в первом случае задача решается сравнительно легко специальной подготовкой жидкости и подбором соответствующего номера фильтра Шотта перед входом в образец (в нашем случае фильтр № 4), то во втором случае требуется специальная установка. При изготовлении установки была произведена замена металлического материала отдельных деталей на неметаллический, предусмотрена возможность осуществления, промывки входной и выходной камер кернодержателя перед сменой фильтрующихся жидкостей и возможность просто и быстро менять направление фильтрации жидкости в образце (см. рисунок). Сосуд с фильтрующейся жидкостью 1, пьезометр 2 и керновый зажим 4 с образцом 5 помещали в термостатируемый шкаф, температура в котором автоматически поддёрживалась равной 35° С при помощи контактного термометра типа ТК-6. В качестве [c.94]

    Однако обычно необходимо решать обратную задачу — находить оптич. характеристики сист. по измеренному набору значений ApJAs и Д — для разл. г-тых углов падения света или при его падении из разл. сред. Общего решения этой задачи не существует. Оптич. характеристики находят по номограммам, построенным по результатам решения прямой задачи с помощью ЭВМ, или спец. программами типа поиск . Перспективно сочетание Э. с др. методами исследования пов-стей. [c.708]

    Устаиовлеиие стросиия. Установление первичной структуры П. складывается из последоват. решения трех задач определения состава, типов связей между моносахаридами и последовательности отдельных моносахаридных звеньев. Первая задача решается гидролизом и количеств, определением (одним из видов количеств, хроматографии, а в отдельных случаях-с помощью фотоколориметрии) всех входящих в состав П. моносахаридов, а также неуглеводных заместителей (если они имеются). [c.22]

    Сумма вычисляется обычно для миллиона точек в ячейке делением каждого из ребер ячейки на сто частей и состоит из 1—3 тысяч слагаемых. Соверпюнно ясно, что такой объем вычислений можно сделать только с помощью электронных вычислителей. В этом случае задача решается быстро, и, как показал Патерсон, ряды такого типа большей частью дают возможность построить грубую модель структуры благодаря их следующему замечательному свойству. Максимумы трехмерной функции Патерсона дают координаты межатомных векторов, существующих в реальной структуре, причем высоты максимумов пропорциональны произведению атомных номеров атомов. Благодаря этому свойству межатомные векторы, соединяющие тяжелые атомы, резко выделяются в ряду Патерсона. [c.356]

    Сложная задача классификации различных типов произведений решается при помощи сопоставления произведению функций вспомогательного графа, п вершин которого изображают п частиц рассматриваемой группы. Пунктирные линии, соединяющие вершины, означают множитель К7г, а сплошные множитель —1.геггд(Я). Например, для п = 2 имеем тип г и 5г/г0  [c.8]

    При вакуумной перегонке применяют приемник1Г только круглой формы из тонкостенного стекла или толстостенные сосуды. Особой задачей при этом является распределение фракций по отдельным приемникам и их отбор. Если фракции можно отобрать после окончания перегонки, то эта задача решается при помощи простых средств. Часто применяют простое приспособление, известное под названием паук , которое допускает нагревание дистилляционной трубки снаружи в случае затвердевания дистиллята. Кроме того, применяют фракционаторы или прибор типа колокола Брюлша, состоящего из вместительного сосуда, подобного эксикатору, с установленными в нем приемниками. Распределение дистиллята можно производить либо поворотом центрального шлифа, либо, удобнее всего, при помощи магнита [501]. B e эти приборы не очень эффективны вследствие большого мертвого пространства в них, как и в пауке , почти неизбежно последующее изменение состава фракций, особенно в случае легколетучих веществ.,  [c.471]

    Общее количество тепла, выделяющееся в промышленном реакторе, составляет, вероятно, около 700 кДж/моль пропилена. Одним из главных условий поддержания оптимальной температуры в зоне реакции является отвод этого тепла. В процессе фирмы Sohio температуру реакции регулируют путем использования охлаждающих змеевиков, находящихся в слое псевдо-ожиженного катализатора, а в процессе фирм ВР — Ugine эта задача решается с помощью реакторов трубчатого типа, трубки которых имеют малый внутренний диаметр и заполнены [c.173]

    При анализе блок- и привитых сополимеров или разветвленных гомополимеров возникают две задачи диагностика сополимера или разветвленного гомополимера и исследование их полидисперсности, а также определение присутствующих в составе сополимера соответствующих линейных гомополимеров. Эти задачи решают сравнением хроматографич. подвижности анализируемых фракций полимера с хроматографич. подвижностями соответствующих линейных гомополимеров в разных растворителях. Окончательная диагностика осуществляется либо обработкой хроматограммы двумя проявителями, специфически окрашивающими гомополимеры разного типа (двойное окрашивание хроматографич. пятна указывает на наличие сополимера), либо анализом состава полимера путем спектрофото-метрии непосредственно на пластинке или после элюирования зоны полимера с хроматографич. пластинки, напр, с помощью пиролитич. газовой X. [c.423]

    Теоретический анализ кинетики интеркристаллических реакций типа (V.42) (здесь будет дана лишь его канва) может быть проведен на основе тех же представлений, какие используются в развиваемой В. В. Антоновым-Романовским диффузионной теории кинетики фосфоресценции [1] (см. также [127]). При этом следует учитывать действие двух факторов, изменяющих распределение дефектов в кристалле и их концентрацию электростатическое взаимодействие и диффузию. Рассмотрим вначале распределение донорных дефектов uj по отношению к акцепторному дефекту uzn Эта задача решается при помощи так называемого диффузионнодрейфового уравнения шаровой симметрии [c.168]

    При испытаниях пневматического насоса камерного типа необходимое рабочее давление создается дросселированием на выходе из насоса, т. е. изменением сопротивления в напорном трубопроводе при небольших длинах его, а при испытаниях насоса лифтного типа необходимое рабочее давление можно создавать путем изменения высоты подъема воды (длины напорного гидравлического трубопровода), так как помещать дроссель в напорный трубопровод нельзя — это приводит к нарушению нормального рабочего процесса. Практически последняя задача решается при помощи специальных экспериментальных наливных колодцев, отметка и высота водоподъема в которых определяются объемом залитой воды, так как при работе отметка воды в колодце остается постоянной вследствие взоврата поднятой воды вновь в колодец по сливному трубопроводу. Экспериментальный наливной колодец в относительно широких пределах обеспечивает необходимые условия для испытаний насосов любого типа, но использование его связано со значительными затратами на сооружение. Кроме того, [c.170]

    Выше приводились примеры расчета одного из свойств изоалканов - критической температуры. Такого типа задачу принято называть прямой задачей моделирования. Решение прямых задач, представленных в виде уравнения или системы уравнений, когда известны значения констант модели, не представляет собой вычислительной трудности и может быть легко выполнено с применением обычного калькулятора. Обратные задачи моделирования, т. е. адекватный подбор коэффициентов модели, представляют собой более сложную вычислительную проблему и они могут быть решены только с помощью компьютера. [c.20]

    Вследствие такого характера расчетов задачи на Л. п. поддаются решению при ручной технике вычислений или при помощи счетных приборов (включая наиболее совершенные виды клавишных машин-автоматов) только в простейших случаях, представляющих чисто экспериментальный интерес. Основу же применения Л. п. для решения более крупных и сложных зг ач, имеющих практич. значепие, составляет возможность использования электронных вычислительных машин. При их использовании необходимо для конкретных типов задач и применительно к онределенному виду машин разработать машинные алгоритмы, в к-рых заключена программа вычисле1П1й. На осиове таких алгоритмов задачи решаются на электронных вычислительных машинах с минимальной затратой труда и времеии. Создание алгоритма для машинных расчетов представляет трудоемкую и сложную работу. Разработаны машинные алгоритмы для решения нек-рых тппов задач (в частности, по составлению оптимального плана перевозок однородных грузов). [c.398]

    Выбор типа зависимости обусловливается практическим удобством. С ростом числа компонентов значительно увеличивается трудность выражения равновесия. Для двухкомпонентной системы равновесие можно представить с помощью пучка кривых на плоскости, для трехкомпонентной системы приходится оперировать с комплексом поверхностей. Для большего числа компонентов задача решается с помощью целого комплекта таблиц. [c.586]

    Каждому виду службы Internet соответствует сервер определенного типа. После передачи запроса протоколу T P/IP он по типу запроса отправляет его на обработку серверу этого типа. Например, запросы от броузеров навигации по Web-страницам обслуживает Web-сервер. Поскольку по 1Р-адресу нельзя определить тип нужного сервера, эта задача решается с помощью портов T P/IP. В общей сложности может быть до 65535 портов T P/IP, однако реально используется всего несколько десятков. Наиболее часто используемые порты перечислены в табл. 10.3. [c.219]


Смотреть страницы где упоминается термин Типы задач, решаемых с помощью ДОВ и КД: [c.235]    [c.109]    [c.183]    [c.87]    [c.246]    [c.423]    [c.61]    [c.246]    [c.126]    [c.61]    [c.88]   
Смотреть главы в:

Дисперсия оптического вращения и круговой дихроизм в органической химии -> Типы задач, решаемых с помощью ДОВ и КД




ПОИСК







© 2025 chem21.info Реклама на сайте