Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры на долговечность полимеров

    При растяжении полимеров, когда Р > Ркрит характерными параметрами являются предельные — наивысшие значения напряжений (пределы прочности) и обратимых деформаций, а также времена с момента начала деформирования до разрыва (долговечность) образцов, т. е. разрывные характеристики. С повышением скорости деформаций пределы прочности и разрывные деформации возрастают, а долговечность быстро снижается. В зависимости от задаваемых скоростей деформаций или напряжений пределы прочности составляют от десятых долей до 5—10 МПа, предельные деформации могут достигать нескольких сотен процентов, долговечность изменяется от многих часов до малых долей секунды. Связь между пределом прочности и долговечностью (временем до разрыва) определяется степенным уравнением (7.12), т. е. так же, как и для структурированных полимеров (резин). Влияние температуры на разрывные характеристики определяется ее влиянием на начальную вязкость. Это однозначно свидетельствует о том, что в вынужденном высокоэластическом состоянии прочностные свойства и процесс разрыва полимеров определяются их релаксационными характеристиками. В отличие от того, что известно для кристаллических и стеклообразных полимеров в вынужденном высокоэластическом состоянии процессы разрыва макроцепей, образования свободных радикалов и соответственное снижение молекулярной массы имеют пренебрежимо малое значение. [c.236]


    Влияние температуры на долговечность полимеров [c.139]

    Типичным примером влияния температуры на долговечность могут служить данные для трех существенно различных твердых тел алюминия (поликристаллический металл), капрона (ориентированный полимер) и каменной соли (ионный монокристалл). [c.56]

    В основу оценки долговечности клеевых соединений должно быть положено влияние таких эксплуатационных факторов, как температура, влага, атмосферные условия, различные излучения и т. д. Старение клеевых соединений изучается сравнительно давно предложены различные способы ускоренного старения, которые далеко не всегда обоснованы, так как механизм старения клеящих полимеров исключительно сложен и специфичен для различных полимеров. Все же с известной степенью достоверности, пренебрегая рядом побочных процессов, о долговечности клеевых соединений можно судить но скорости термической деструкции. [c.28]

    При использовании пленки в качестве конструкционного материала возникает требование долговечности изделия. Для формулирования этого требования надо знать вид напряженного состояния, характер изменения напряжений в изделии во времени и влияние температуры и окружающей среды на температурно-временную зависимость прочности полимеров. Долговечность и работоспособность пленки необходимо оговаривать не только в тех случаях, когда она находится в напряженном состоянии, но и тогда, когда она представляет собой комбинированный (многослойный) материал, который может расслаиваться, или в изделии из пленки есть сварные швы, которые могут разрушаться, или известно, что пленочный материал будет эксплуатироваться в условиях, способствующих его старению, и т. д. Итак, перейдем к формулированию требований, предъявляемым к полимерным пленочным материалам, применяемым в различных областях народного хозяйства. [c.30]

    Другие советские исследователи (главным образом, в Физико-техническом институте АН СССР им. А. Ф. Иоффе) выполнили ряд исследований в этой области. С помощью метода малоуглового рентгеновского рассеяния изучена кинетика образования микротрещин при нагружении и долговечность [1003]. Эта техника также была использована для измерения размеров трещин в растянутом полиамиде [10661. Образец был освобожден от нагрузки и затем вновь нагружался. Каждое новое нагружение дает различную временную зависимость образования радикалов. Это приводит к предположению о том, что разрывы связи необратимы из-за быстрого превращения образовавшихся радикалов во вторичные радикалы, которые затем дезактивируются при взаимодействии с активными центрами цепи, достаточно удаленными, чтобы препятствовать прямой рекомбинации. Изучали альдегидные группы, образующиеся при радикальных реакциях, сопровождающих процесс деструкции. Советские ученые применили концепцию цепных радикальных реакций для объяснения кинетики макромо-лекулярного разрыва в напряженном полимере [1063, 1067]. Для исследования кинетики распада полиолефинов измеряли изменение интенсивности характерных полос поглощения в ИК-спектре [423, 424, 802, 862, 994, 1121]. При различных температурах и напряжениях соотношение между концентрацией образующихся групп и продуктами распада постоянно для данного типа образцов. При этом опять обнаружена экспоненциальная зависимость между напряжением и скоростью образования альдегидных групп. Реакция описывается уравнением первого порядка [1121]. В других публикациях сообщалось о влиянии температуры [1002, 1134, 1218], ориентации [1134, 12181, характера надмолекулярной структуры [423] и степени вытяжки [154, 423] на процесс разрушения. [c.309]


    В области нехрупкого разрушения полимеров между температурами Тхр и Тс (см. рис. 11.4) рассеяние упругой энергии при росте трещин из-за различных локальных деформационных процессов становится существенным и термофлуктуационный механизм переходит в термофлуктуационно-релаксационный (см. табл. 11.2). Кроме того, механические потери оказывают существенное влияние на динамическую прочность полимеров при циклических нагружениях. Вызываемый ими локальный разогрев в местах перенапряжений ускоряет рост трещин и снижает долговечность и прочность. [c.314]

    На схеме прочностных состояний (см. рис. 7.1) указаны предполагаемые области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния, лежащая между температурами пластичности Гп и текучести Гт. Механизмы разрушения и теория долговечности для областей I, II и III были подробно обсуждены в предыдущих главах. В этой главе будет более детально рассмотрено влияние релаксационных переходов иа прочность в хрупком и квазихрупком состояниях. Основное же содержание главы — разрушение полимеров при высоких температурах, когда долговечность в основном определяется релаксационными процессами. [c.195]

    Максвелл приводит интересные данные о влиянии надмолекулярной структуры на долговечность полиэтилена высокой илотности. Если проводить кристаллизацию этого полимера под высоким давлением, то образующаяся мелкосферолитная надмолекулярная структура дает десятикратное увеличение долговечности по сравнению с долговечностью образцов того же полимера, закристаллизованного только при повышении температуры. Плотности образцов в определенных условиях получаются одинаковыми (следовательно, степень кристалличности здесь одна и та же), но при кристаллизации без давления образуются более совершенные и крупные сферолиты, по границам которых в основном и происходит разрушение. [c.153]

    Полиолефины не являются долговечными материалами, им свойственно термоокислительное старение, протекающее по типичному механизму радикально-цепных окислительных реакций [185]. Инициируют старение повышенные температуры переработки и эксплуатации, действие света, агрессивных сред, влияние атмосферных условий и механические нагрузки. В результате ухудшаются эксплуатационные свойства полимера — эластичность, механическая прочность, диэлектрические свойства, изменяется окраска, увеличивается хрупкость. [c.173]

    На длительную прочность клеевых соединений большое влияние оказывает температура испытаний. Как известно (гл. 2), долговечность твердых тел, в том числе полимеров, хорошо описывается температурно-временной зависимостью (2.4), которая соблюдается в широком интервале времени — от 10 до 10 с. Однако при очень малых или больших временах могут наблюдаться отклонения от этого уравнения. [c.235]

    Усталостный износ пластмасс изучен очень слабо. В стеклообразном состоянии пластмассы характеризуются в основном абразивным механизмом износа как при скольжении по абразивному полотну, так и по твердым шероховатым поверхностям [56]. Кристаллические полимеры, обладающие высокоэластической компонентой, изнашиваются подобно резинам. Влияние температуры на износостойкость пластмасс можно рассмотреть с точки зрения изменения константы а в выражении (6.25). В работах Ратнера, Лурье и Фарберовой [16, 56—59] показано, что в случае усталостного износа а >1. Так как а характеризуется числом циклов деформации, разрушающих материал, и с увеличением температуры возрастает, то при переходе от хрупкого к нехрупкому состоянию полимера повышение температуры трения приводит к увеличению доли усталостного механизма износа и возрастанию общей износостойкости пластмасс. Было также отмечено, что с повышением температуры износ по абразивной шкурке приобретает характер усталостного износа. Исходя из молекулярного механизма явления, усталостный износ связан с долговечностью материала. Ратнер предположил, что механизм истирания имеет термоактивационную природу разрушения и характеризуется отношением  [c.173]

    Заканчивая рассмотрение результатов исследования кинетики разрущения полимеров в условиях УФ-облучения, можно сделать вывод, что весь комплекс экспериментальных данных о влиянии УФ-радиации на скорость накопления нарушений (на долговечность и скорость роста трещин) хорошо объясняется с позиций кинетической концепции прочности в предположении о суммировании скоростей радиационного и термофлуктуационного разрушения. Более того, ун<е на основании феноменологических исследований зависимости радиационной долговечности от условий испытания (напряжения, температуры, интенсивности облучения) удалось сделать ряд предположений о природе процесса фотомеханической деструкции и выявить активирующее влияние напряжения на квантовый выход фотодиссоциации. Однако, конечно, кинетическая концепция прочности не может претендовать на предсказание вида формул для Vj и xj. Для выявления природы фотомеханической деструкции и вывода обоснованных выражений зависимости Tj( r, Т, /) необходимо помимо феноменологических исследований применять и прямые методы исследования, позволяющие судить об элементарных актах, лежащих в основе явления. Показательным в этом отношении является рассмотренный пример применения метода ЭПР для исследования элементарных актов процесса фотомеханической деструкции. Польза подобных исследований, наряду с изучением феноменологических закономерностей, очевидна. Для более глубокого изучения деталей процесса фотомеханической деструкции необходимо, видимо, использовать в дальнейшем и спектроскопические методы исследования, так как предложенная выше трактовка явления не общепринята (см., например, [784 808]). [c.422]


    В любом режиме механического и температурного воздействия полимер теряет свою форму, т. е. размягчается, через определенный промежуток времени. Размягчение, проявляющееся в быстром развитии деформации, происходит скачкообразно. В простейшем случае, когда одноосное напряжение (например, растягивающее) и температура постоянны, размягчение проявляется в образовании и быстром развитии шейки. В этих условиях процесс образования шейки носит такой же скачкообразный характер, как и при обычном непрерывном растяжении. Время, которое проходит с момента приложения нагрузки до быстрой потери первоначальной формы образца (т. е. до его размягчения), зависит от величины напряжения. Чем больше напряжение, тем меньше долговечность формы полимерного материала. Аналогичное влияние оказывает и температура. Повышение температуры при одинаковом напряжении уменьшает время, необходимое для начала быстрой деформации, и наоборот. [c.375]

    В основу оценки долговечности должно быть поло- жено влияние таких факторов, как температура, влага-атмосферные условия и др. Предложенные способы ускоренного старения далеко не всегда обоснованы, так как механизм старения клеящих полимеров исключительно сложен и специфичен для различных полимеров. Часто используются циклические испытания, включающие последовательно выдержку в воде, замораживание, оттаивание и нагревание на воздухе при 80 °С. [c.75]

    Влияние пластификации на параметры уравнения для долговечности. Изучение влияния пластификации на долговечность полимеров под нагрузкой производилось в [197, 200] путем сравнения долговечности пластифицированных и непластифициро-ванных вискозных и капроновых волокон. Испытания в этой серии опытов производились при комнатной температуре. [c.79]

    Нагрев вызывает температур ную хрупкость полимера. Специфическое влияние температуры вытекает из качественных и количественных предпосылок флуктуационной теории прочности. Эти вопросы обстоятельно освещены выше. Их уместно лишь несколько дополнить конкретными наблюдениями. Например, Хейсс и Ланза исследовали влияние поверхностно-активной среды, температуры и окисления. Во всех случаях они использовали методы испытаний при постоянной деформации методику Белл-Телефон и одноосное растяжение образца. В этой серии опытов применяли материал с удельным весом 0,96 Г1см и индексами расплава 0,54 и 0,60 Г/Ю мин. В воде и этиленгликоле логарифм долговечности оказался пропорциональным обратной температуре, что соответствует закону Аррениуса. Было установлено, что температурная хрупкость. не зависит от вида напряженного состояния. Опыты проводили при различных двухосных деформациях от 4,7 до 25,2% в очищенном азоте при 70 °С. Параллельно исследовали долговечность при линейном растяжении от 6 до 50% . В обоих случаях при деформациях ниже 4% долговечность увеличивалась неограниченно (см. рис. 91), а выше 15% — неиз(менно составляла 20 ч. [c.209]

    Деформационные свойства, в том числе механические потёри, являются проявлением релаксационных свойств полимеров. Влияние механических потерь на процесс разрушения поставило более широкую проблему о взаимосвязи релаксационных свойств (деформационных) и процессов разрушения в полимерах. Эта важная проблема находится в стадии развития как в теоретическом [10 11.20], так и в экспериментальном плане [11.21 11.22]. Так, замечено, что прочность испытывает на температурной зависимости скачкообразные изменения при температурах у- и -релаксационных переходов, когда изменяется молекулярная подвижность в цепях полимера. В стеклообразном состоянии существует ряд характерных температур (релаксационных переходов), в которых долговечность претерпевает изменение. Для исследования природы деформация и разрушения полимера в стеклообразном состоянии изучались ползучесть, долговечность, разрывное напряжение и ширина линии ЯМР в широком температурном интервале. Установлены следующие принципиальные положения. [c.317]

    Из формулы (IV. 14) видно, что при возрастании напряжения показатель степени и время релаксации т уменьшаются. Влияние величины деформирующей силы на возможность проявления вынужденноэластической деформации может привести к тому, что при больших величинах действующих напряжений стеклообразный полимер будет разрушаться как хрупкий материал, т. е. уменьшается интервал между температурами хрупкости и стеклования. Этот интервал, называемый интервалом вынужденной эластичности, очень важен, так как в его пределах твердые стеклообразные полимеры (пластмассы) можно применять в качестве конструкционных материалов. Благодаря возможности развития высокоэластических дефорл1аций полимеры в этом интервале обладают большей долговечностью (см. гл. VIII), т. е. способностью противодействовать приложенным нагрузкам в течение длительного времени их действия. Например, полиметилметакрилат (прозрачное органическое стекло) обладает интервалом вынужденной. эластичности от 100 " С (температура стеклования) до 10° С (температура хрупкости), т. е. может широко [c.113]

Рис. 226. Влияние ультрафиоле 1 оаого облучения на силовые зависимости долговечности для полимеров при комнатной температуре (757]. о) поливиниловый спирт б) триацетатцеллюлоза, волокна в) полиметилметакрилат. —без УФ-облучения. 2—при УФ-облучении интенсивностью 0,03 калЦсм мин). Рис. 226. Влияние ультрафиоле 1 оаого облучения на <a href="/info/1106957">силовые зависимости</a> долговечности для полимеров при <a href="/info/22443">комнатной температуре</a> (757]. о) <a href="/info/606">поливиниловый спирт</a> б) <a href="/info/323512">триацетатцеллюлоза</a>, волокна в) полиметилметакрилат. —без УФ-облучения. 2—при УФ-<a href="/info/935381">облучении интенсивностью</a> 0,03 калЦсм мин).
Рис. 237. Влияние агрессивной среды (двуокись азсга) на силовые зависимости долговечности для полимеров при комнатной температуре 809]. с) Триацетатцеллюлоза, волокно, / — воздушная среда (без N0 ), 2 и 3—концентрация КОз 0,8 10 и 3,0 10 лоль/л б) капрон, волокно. 1—воздушная среда (без ЫОг), 2 и 3—концентрация N0 0,6 10 и 1.7 10 моль л. Рис. 237. <a href="/info/1574314">Влияние агрессивной среды</a> (двуокись азсга) на <a href="/info/1106957">силовые зависимости</a> долговечности для полимеров при <a href="/info/22443">комнатной температуре</a> 809]. с) <a href="/info/323512">Триацетатцеллюлоза</a>, волокно, / — <a href="/info/400009">воздушная среда</a> (без N0 ), 2 и 3—концентрация КОз 0,8 10 и 3,0 10 лоль/л б) капрон, волокно. 1—<a href="/info/400009">воздушная среда</a> (без ЫОг), 2 и 3—концентрация N0 0,6 10 и 1.7 10 моль л.
    Долговечность твердых тел при растяжении в условиях всестороннего давления. Исследованию влияния гидростатического давления на деформационные и прочностные свойства твердых тел посвящено много работ. Однако непосредственному изучению долговечности и ползучести твердых тел под нагрузкой в условиях гидростатического давления и анализу соответствующих экспериментальных данных с позиций кинетической концепции прочности посвящено пока только несколько работ [112, 831, 832, 979]. В них исследовалось влияние давлений до 15 000 атм на долговечность и ползучесть ряда чистых поликристаллических металлов (А1, Си, Ag, Mg, Zn, d), сплавов (дюралюминий и порошковый сплав САП-2), полимеров (капроновое волокно и гидратцеллюлоза) и ионного соединения (Ag l поликристаллический). На всех этих материалах обнаружено существенное увеличение долговечности и замедление ползучести при испытаниях в условиях гидростатического давления. Методика испытаний на долговечность под давлением описана в 4 гл. I. Все испытания в [112, 831, 832, 979] проведены пока при одной (комнатной) температуре. [c.437]

    В зависимости от природы пигментов и наполнителей и степени наполнения можно получить покрытия с различными свойствами и разной термостойкостью. Механические свойства покрытий определяются прочностью контакта частиц наполнителей и пигментов друг с другом и с полимером. Долговечность и максимальная температура применения лакокрасочных покрытий на основе полиорганосилоксановых пленкообразующих зависят также от стойкости этих материалов к окислению кислородом воздуха, особенно при повышенных температурах. Процессы, протекающие при нагреве на границах раздела покрытие — подложка или пигмент — пленкообразующее, в настоящее время изучены недостаточно. Однако при разработке покрытий, исследовании их свойств и эксплуатации отмечено сильное взаимное влияние пленкообразующих и пигментов. Цветные термостой- [c.43]

    Силоксановые смолы используются для получения различных покрытий и в производстве слоистых изделий с повышенной теплостойкостью и хорошими электроизоляционными свойствами. И здесь природа боковой органической группы оказывает заметное влияние на свойства смолы. Метилсилоксановые смолы используются в электроизоляционных композициях или в стеклопластиках [113], но их прочность ниже прочности метил-фенилсилоксановых смол. Этильные и пропильные группы понижают теплостойкость и температуру размягчения смолы. Фе-нилсилоксановые смолы — хрупкие и плавкие продукты с низкой прочностью метилфенилсилоксановые смолы по сравнению с метил- и фенилсилоксанами имеют более высокие прочность, гибкость, электросопротивление, долговечность и термостойкость и поэтому находят широкое применение для изготовления изоляции, покрытий и слоистых пластиков [116]. Силиконовые смолы обладают водоотталкивающими свойствами и устойчивы к действию разбавленных щелочен и кислот, но по прочности и ударной вязкости они уступают органическим полимерам. [c.360]

    По аналогии с одноосноориентированными полимерами [32] естественно предположить, чта структурные преобразования при плоскостной ориентационной вытяжке оказывают существенное влияние на температурно-временную зависимость прочности ориентированных органических стекол Соответствующие измерения целесообразно проводить при температурах ниже 7хр. На рис. 5.34 приведены" данные, показывающие, что логарифм долговечности неориентированного и ориентированного стекол находится в прямой зависимости от напряжения при различных температурах (ниже Тхр), что хорошо согласуется с, основными йредставлениями теорий долговечности С., Н. Журкова.. [c.128]


Смотреть страницы где упоминается термин Влияние температуры на долговечность полимеров: [c.140]    [c.149]    [c.87]    [c.220]   
Смотреть главы в:

Прочность полимеров -> Влияние температуры на долговечность полимеров

Прочность полимеров -> Влияние температуры на долговечность полимеров




ПОИСК





Смотрите так же термины и статьи:

Влияние температуры на долговечность

Долговечность полимеров

Температура полимеров



© 2025 chem21.info Реклама на сайте