Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика процессов условий образования

    Если в случае образования мелкодисперсных цеолитов стадией, лимитирующей кинетику процесса, является образование и рост кристаллов, то при кристаллизации цеолитов в виде поликристаллических сростков лимитирующими в зависимости от условий могут быть стадии диффузии компонентов [c.34]

    Одной из основных задач, решаемых при расчете кристаллизаторов, является кинетика процесса кристаллизации, который включает в себя следующие стадии создания пересыщения, образования зародышей и роста кристаллов. Кинетика также зависит от перекристаллизации осадка, коалесценции и дробления кристаллов в результате столкновений между собой и со стенками аппарата. На кинетику массовой кристаллизации существенно влияют температура, степень пересыщения раствора, перемешивание, наличие примесей, физико-химические свойства раствора, конструкция аппарата и т. д. Важное значение имеет также описание условий равновесия между сосуществующими фазами [твердое вещество - жидкость, твердое вещество - газ (пар)]. На основании условий фазового равновесия в первом приближении возможен выбор необходимого растворителя для процесса кристаллизации, а также перекристаллизации. [c.25]


    Главными продуктами этого процесса в промышленных условиях являются триметилпентаны. Следовательно, образование продуктов алкилирования определяется кинетикой процесса (поскольку термодинамика предсказывает низкий выход триметилпентанов при достижении равновесного состояния). [c.15]

    Кинетика процесса гидрокрекинга. Реакции расщепления и изомеризации, протекающие в процессах гидрокрекинга, являются типичными реакциями первого порядка. Распад углеводородов тормозится образованием продуктов расщепления и изменением условий адсорбции [271,272, 273]. Г идрирование и деструктивное гидрирование — реакции второго порядка под высоким давлением водорода равновесные выходы сдвигаются в сторону образования насыщенных соединений и гидрирование может протекать практически до конца. Для поддержания необходимого парциального давления водорода требуется его значительный избыток в связи с этим бимолекулярные стадии гидрогенизации будут описываться уравнениями для псевдомономолекулярных реакций. Таким образом, больщинство реакций, протекающих при гидрокрекинге, должно иметь первый порядок, являющийся для расщепления и изомеризации истинным, а для гидрирования — кажущимся [274]. [c.245]

    При выявлении локальной кинетики процесса на модели трубчатого реактора рекомендуется поступать следующим образом. Сначала на основе экспериментальных данных устанавливают характер распределения температуры по длине реакционной зоны, а также конечные значения концентраций для некоторого нормального технологического режима и для режимов при возможных возмущениях (см., например, рис. V-26 —V-28). При этом желательно найти и условия срыва процесса, даже если придется испортить некоторую порцию катализатора (при каталитическом процессе) и если, конечно, такой срыв не вызывает каких-либо технических осложнений, например образования взрывоопасных концентраций смесей реагентов. [c.187]

    Температура влияет на кинетику процессов переноса и химических реакций, скорость которых возрастает экспоненциально, в соответствии с уравнением Аррениуса [8]. В реальных условиях образование продуктов коррозии происходит с одновременным изменением агрессивности среды. [c.20]

    Отсутствие в системе фазового и динамического равновесия приводит к необходимости учитывать кинетику процессов. Подобное имеет место при рассмотрении движения смесей в областях с быстро изменяющимися внешними условиями, которые существуют в дросселях, теплообменниках, турбодетандерах, в сепараторах, отстойниках, абсорберах и других устройствах. Нарушение термодинамического и динамического равновесия приводит к интенсивному образованию (нуклеации) одной из фаз (жидкой, газовой) с образованием капель и пузырьков и дальнейшему их росту в результате межфазного массообмена (конденсации, испарения), сопровождающегося процессами взаимодействия капель, пузырьков и других образований, приводящих к коагуляции, коалесценции и дроблению. [c.43]


    Другим примером истинного гетерогенного горения является горение нелетучих металлов. Здесь процесс осложняется образованием тугоплавких окислов, блокирующих поверхность металла и препятствующих дальнейшему контакту с кислородом. Если окисная пленка остается компактной, то диффузионная кинетика процесса описьшается формулой (II, 77). При разнице в плотности металла и окисла пленка растрескивается и доступ кислорода облегчается (пример —горение магния). Резкое изменение характера процесса имеет место, когда температура горения достигает температуры плавления окисла. Жидкий окисел частично сдувается с поверхности газовым потоком, что облегчает диффузионный перенос кислорода к поверхности окисляемого металла. Из школьных опытов по химии известно, что в обычных условиях [c.264]

    При низких температурах (<250°) происходит образование гидроперекисей, которые могут быть выделены протекающие в этих условиях реакции в основном аналогичны реакциям олефинов. При температуре 300—400 кинетика процесса становится более сложной, что связано с протеканием цепных реакций с участием альдегидов и гидроксильных радикалов [118] выше 400° эти реакции становятся определяющими. При таких высоких температурах гидроперекиси весьма не стабильны, а радикал КОз-, если он вообще образуется, должен немедленно разлагаться. Это коренное изменение механизма процесса выражается, например, в сложном характере зависимости скорость — температура в области промежуточных температур. Рис. 76 [119] показывает, что максимальная скорость окисления метилэтилкетона может уменьшаться при повышении температуры. Другое очень важное различие между высоко-и низкотемпературными реакциями заключается в почти полном отсутствии влияния строения окисляемого соединения на скорость процесса при высоких температурах, проявляющегося очень резко при низких температурах. При высоких температурах большинство полимеров претерпевает значительную термическую деструкцию и сильно деформируется, что приводит к потере ими свойств, ценных с точки зрения практического использования. Поэтому достаточно рассмотреть только низкотемпературный механизм окисления модельных соединений. [c.177]

    Выяснение кинетических закономерностей флокуляции дисперсий высокомолекулярными веществами представляет интерес как с научной, так и с практической точки зрения. Первое обусловлено тем, что исследование кинетики процесса является одним из важных методов изучения его механизма. Второе связано с необходимостью управления в производственных условиях флокуляцией во времени часто достижение определенной степени осветления суспензии, образования агрегатов нужных размеров и т. д. за сравнительно короткий промежуток времени важнее, чем, скажем, полное осаждение всех частиц. [c.138]

    Эти успехи техники создали условия для исследования новых областей. С одной стороны, стало возможным исследовать механизмы реакций (органических или неорганических), ранее называемых мгновенными , что позволило обнаружить большое разнообразие их. Имеется масса новой информации о самых различных типах реакций, включая перенос протона, образование водородной связи, перенос электрона, образование комплексов, ферментативные реакции, инверсию конфигурации и реакции с участием свободных радикалов и триплетных состояний. С другой стороны, физико-химическому исследованию кинетики процессов вообще и их энергетики особенно способствовало исследование реакций, имеющих низкие энергии активации, и реакций, лимитируемых диффузией. [c.12]

    Полимеризация. Конденсацию олефинов на кислотных центрах мы рассмотрели в гл. 8, где особенно подчеркивали ее роль в дезактивации катализаторов. В реакции такого типа протонирование исходного соединения приводит к образованию иона карбония, который, взаимодействуя с непротонированной молекулой субстрата, дает новый карбониевый ион. В работе Баррера и Оя [14] описано взаимодействие Н-морденита, вакуумированного при 360° С, с парами н-бутил-винилового эфира при 22—50° С. В этих условиях на поверхности, а отчасти и в объеме кристаллитов цеолита, образуются низкомолекулярные полимеры, молекулы которых состоят приблизительно из 10 мономерных звеньев. Скорость полимеризации возрастает, если на мордените предварительно адсорбируют небольшое количество воды (из расчета одна молекула НгО на один бренстедовский центр). Для объяснения этих явлений был предложен механизм катионной полимеризации [реакция (3)], включающий стадию образования вторичных карбониевых ионов, стабилизованных а-алкоксигруппой. Однако, судя по кинетике процесса и, в частности, по наличию прямолинейного участка на графике зависимости количества продуктов [c.130]


    Состояние поверхности графитового анода оказывает существенное влияние на характер кинетических параметров. Как было показано выше, на поверхности углеродных материалов имеются кислородсодержащие соединения, количество и состав которых зависят от предыстории образца. Хотя систематических исследований влияния кислородсодержащих соединений на хлорную реакцию не проводилось, сам факт их воздействия на кинетику процесса описан в ряде работ [100, 102, 104]. Только на новых графитовых электродах удается получить достаточна четкие тафелевские прямые [100]. Напротив, согласно [102], хорошая воспроизводимость как по величине перенапряжения, так и по форме поляризационной кривой достигается после длительного окисления графита в мягких условиях — в слабокислом растворе хлорида, в котором несколько процентов от общего тока идет на образование СОг. При этом исходные прочные поверхностные оксиды постепенно удаляются и образуется новая поверхность в некотором стационарном состоянии окисления (рис. 44). Катодное восстановление электрода приводит к снижению перенапряжения и изменению формы поляризационной кривой. Описанные явления наблюдаются как в случае пористых, так и пропитанных хлоридами или полиэтиленом электродов, а также компактных пирографитовых анодов [104]. [c.122]

    При разработке мероприятий по обеспечению взрывобезопасности реакционных процессов нужно изучать механизм и кинетика химических реакций, условия образования и накопления нестабильных побочных продуктов влияние на ход процесса интенсивности отвода реакционного тепла и равномерности распределения реагирующих компонентов, температуры и давления и др. На основании материалов проведенных исследований должны определяться параметры процесса, конструкции аппаратов, средства защиты и предупреждения взрывов. [c.240]

    Вместе с тем они представляют первостепенный интерес для понимания механизма процесса в целом. Как мы видели выше, одно из главных превращений перекисей при автоокислении — их распад — способно индуцировать за счет освобождающейся при этом энергии и образования свободных радикалов новую (вторичную) цепную реакцию исходного вещества с молекулярным кислородом и таким образом существенно менять всю кинетику процесса, что имеет особенно большое значение в явлениях высокотемпературного окисления и горения углеводородов. При окислении в жидкой фазе, при относительно низких температурах, направление превращений промежуточно образующихся перекисей, зависящее от их строения и условий процесса, определяет состав продуктов реакции. [c.159]

    Полученное уравнение говорит о том, что кинетика процесса образования стеарата лития в вихревом слое соответствует реакциям первого порядка, которые при С<1 протекают при более высоких скоростях, чем реакции второго порядка, характерные для обычных условий. Это можно объяснить дополнительным воздействием на поток компонентов всех факторов интенсификации процессов в вихревом слое, подробно рассмотренных выше. [c.52]

    О механизме распада промежуточных продуктов, образующихся в процессе окисления, можно судить по кинетике расходования исследуемого вещества в растворителе в атмосфере азота, т. е. в условиях, когда образование этого вещества из исходного углеводорода невозможно [66]. Следует иметь в виду, что полученные таким образом кинетические кривые распада промежуточного продукта не могут полностью отождествляться с кинетическими кривыми распада этого продукта в условиях окисления, так как при этом не учитывается ни влияиие кислорода на процесс распада, ни то, что состав растворителя, в котором изучается распад промежуточного продукта, может оказывать весьма существенное влияние на кинетику процесса. Для наибольшего приближения к условиям окисления распад промежуточных соединений весьма часто изучают в среде окисленного углеводорода. С этой целью процесс окисления углеводорода прерывают через некоторое время после начала реакции, кислород тщательно выдувают из системы и в атмосфере чистого азота определяют изменение концентрации исследуемого вещества, образовавшегося при окислении углеводорода до момента удаления кислорода. [c.48]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    Продукты коррозии железа, образующиеся в сероводородсодержащих средах, имеют общую формулу Ре Зв и оказывают существенное влияние на кинетику коррозионного процесса. Структура и защитные свойства сульфидов железа зависят от условий образования, главным образом от парциального содержания сероводорода в среде. Рентгеноструктурны ми и электронографическими исследованиями было установлено, что при низких концентрациях сероводорода (до 2,0 мг/л) сульфидная пленка состоит главным образом из троилита Ре5 и пирита РеЗа с размерами кристаллов до 20 нм. При концентрациях сероводорода от 2,0 до 20 мг/л дополнительно появляется небольшое количество кансита РедЗз. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит и размеры кристаллов увеличиваются до 75 нм. Кансит имеет несовершенную кристаллическую решетку, поэтому он не препятствует диффузии железа и не обладает защитными свойствами. В результате устанавливается постоянная и довольно высокая скорость коррозии. Кристаллические решетки пирита и троилита имеют относительно небольшое число дефектов, тормозят диффузию катионов железа и оказывают некоторое защитное действие. [c.18]

    Следствием нормального распределения компонентно-фракционного состава по свободным энергиям образования является аналогичное распределение состава по стандартным температурам кипения, теплотам фазовых переходов, молекулярным массам, геометрическим характеристикам компонентов и фракций и т.д., рис 2.1. Уравнение (2.2) означает, что различные компоненты МСС связаны в единую энергетическую систему, и выступают, как единый статистический объект. Индивидуальность компонентов отходит на второй план. В э той ситуации различные по химическому составу системы в различных процессах, при условии совпадения средних значений энергии Г иббса, проявляют близкие химические и физические свойства. Такие системы будем рассматривать как изоэнергетические или изореакционные. Например, нами установлено, что совершенно различные нефтяные фракции и индивидуальные углеводороды с точки зрения кинетики процесса пиролиза ведут себя одинаково в условиях высоких температур, независимо от химичекой природы сырья и от того, каталитический этот процесс или термический. Так, были изучены различные системы от индивидуальных углеводородов до высокомолекулярных нефтяных фракций и наГще-на универсальная зависимость фактора жесткости процесса пиролиза, которая характеризует отношение суммарной массы пиролиза до Сз включительно, к массе пропилена (глава 3). На рисунке 2.2 [Ш, 11] представлена зависимость фактора [c.50]

    Механизм и кинетику образования высокополимерных соединений изучают различными методами, в том числе путем определения скорости процесса при разных условиях реакции, определения химического состава продуктов реакц.ии, а также физических свойств и химического строения полимера в процессе его образования. Полученные данные используют для усовершенствования промышленных процессов синтеза полимеров и для установления влияния условий синтеза на свойства получаемых полимеров. [c.86]

    В предыдущей главе описаны кинетические законы, которым следуют химические реакции, причем весь процесс рассматривался только на молекулярном уровне. В то же время в реальных условиях эволюция химических систем привела к последовательному образованию множества сложных динамических структур, подготовивщих переход химической эволюции в биологическую. Поэтому проблема возникновения микро- и макроорганизаций в неравновесной системе, получающей от внешней среды вещества и энергию (например, развивающейся в изотермических условиях), исключительно важна. Возможно ли возникновение упорядоченности— временной и пространственной — в исходно однородной системе, в которой протекают химические реакции Трудность решения этой задачи обусловлена тем, что нет столь надежного признака устойчивости неравновесных систем, какими для равновесных является экстремум соответствующего термодинамического потенциала. Поэтому приходится прибегать к изучению кинетики процессов и в ней искать условия возникновения упорядоченности. В наиболее общей форме эта задача решена Тьюрингом (1952), показавшим, что в результате развития химической реакции при постоянной температуре и диффузионном перемешивании концентрации промежуточных продуктов реакции могут распределяться в пространстве неравномерно, образуя зоны различной концентрации. [c.325]

    Вопрос о скорости химических реакций, о влиянии на скорость различных факторов и о механизме реакций — предмет изучения в химической кинетике. Этот раздел химии открывает возможность различными способами изменением температуры, давления, концентраций, введением катализаторов, облучением светом и т. д. — влиять на скорость установления равновесия, на скорость желательных и нежелательных реакций, самопроизвольное течение которых термодинамически возможно. Изучение кинетики процессов дает возможность глубже понять их механизм, без чего нельзя управлять ими. Если определение энергоспособности (АН) и работоспособности (АС) процесса требует только знания энтальпии и свободной энергии образования начальных и конечных веществ при заданных условиях, то скорость процесса зависит не только от того, какие вещества стоят в правой и левой частях равенства она также всегда зависит от переходного состояния (промежуточных продуктов), которые далеко не всегда удается выделить и изучить. Поэтому проблемы кинетики очень сложны. [c.39]

    П. Получение и свойства дисперсных (лиофобных) систем. Этот раздел начинается с анализа термодинамики и кинетики процессов зарождения новой (высокодисперсной) фазы в условиях метастабильности исходной системы, т. е. конденсационных путей образования дисперсных систем диснергационные методы затрагиваются лишь частично, будучи отнесены к заключительному разделу книги. Далее следует относительно сжатое описание неспецифических свойств дисперсных систем мoлeкyляpнo- кинeтичe киx (броуновское движение, диффузия, осмос, седиментационно-диффузионное равнове- [c.12]

    Одной нз важных областей применения химической кинетики является изучение кинетических закономерностей образования и деструкции иолимеров. Изделия из полимеров нашли широкое практическое нримененне, поэтому производство полимеров является одной из основных отраслей химической промышленности. Изучение кинетики и механизма синтеза полимеров и.меет большое значение для оптимизации соответствующих технологических пронессов. Деструкция полимеров является одним из основных факторов, ограничивающих диапазон условий, в которых могут эксплуатироваться изготовленные из полимерных материалов детали машин и меха-низ.мов. Кинетические исследования процессов деструкщш полимеров являются важным звеном в решении проблемы стабилизации полимерных материалов. Для понимания молекулярных основ жизнедеятельности важное значение имеет изучение кинетики и механизма образования и разрушения биологических полимеров — белков, нуклеиновых кислот, полисахаридов. [c.413]

    Не менее существенное влияние на кинетику процесса конденсации фенола с формальдегидом оказывает метанол, в силу ряда причин неизбежно присутствующий в тех пли иных количествах в составе реакционной смеси. Эти причины состоят в следующем во-первых, вследствие того, что при производстве формальдегида в качестве исходного сырья используют метанол, последний всегда попадает, пусть в небольших количествах, в состав конечного продукта во-вторых метанол образуется — особенно интенсивно в щелочной среде — в результате диспропорционнрования (реакция Канниццаро) наконец, в-третьих, метанол вводят в концентрированные водные растворы формальдегида для их стабилизации за счет образования гемиформалей (3.4) — обрыв цепи препятствует образованию выпадающего в осадок малорастворимого полимера. Днформали в этих условиях (в нейтральной или слабокислой среде) не образуются. [c.45]

    Описание кинетики процессов образования неньютоновских, реологически сложных сред, какими являются дисперсии полимеров в нефтяных остатках, представляет необходимое условие, обеспечивающее получение сведений о поведении системы на разных этапах приготовления композиционного материала. [c.124]

    В работе приведены результаты исследований анодных процессов методом поляризационных кривых, потенциостатическим методом, а также путем определений перекисных соединений в растворах щелочей с добавками борной кислоты, в растворах буры, пентабората калия, карбонатов щелочных металлов и аммония и в смевзанных растворах карбонатов и боратов. Исследования проводились с целью выяснения особенностей кинетики анодных процессов, природы поляризации, определения кинетических параметров, выяснения механизма элементарных актов, выяснения влияния различных факторов на условия образования перекисных соединений в перечисленных системах. [c.140]

    С уменьшением а)уиш[туды затрудняется проникновение углеводородной ореды в зону контакта, определяющей кинетику разрушения и образования защитник пленок. Прй относительных перемещениях, равных 60 мкм, топлива не отли ются по противоизнос-ным свойствам. Для жидкооти АМГ-10 при данных условиях эксперимента характерен процесс схватывания. [c.121]

    Рассмотренные теорпи, основанные на преобладающей роли какого-нибудь одного определенного процесса пли явления при образовании или разрушении адгезионной связи, приложимы к различным случаям А. или даже к различным сторонам этого явления. Так, молекулярная теорпя А. рассматривает лишь конечный результат образования адгезионной связи и природу сил, действующих между адгезивом и субстратом. Диффузионная теория, наоборот, объясняет лишь кинетику образования адгезионного соединения и справедлива только для А. более или менее взаиморастворимых полимеров. В электрич. теории главное внимание уделяется рассмотрению процессов разрушения адгезионных соединений. Т. обр., единой теории, объясняющей явления А., нет и, вероятно, не может быть. В различных случаях А. обусловливается разными механизмами, зависящими как от природы субстрата и адгезива, так н от условий образования адгезионной связи многие случаи А. могут быть объяснены действием двух или нескольких факторов. [c.15]

    Для легкого образования аддуктов кристаллы мочевины, содержащие воду, тщательно перемешивают с подлежащим депарафинизации маслом или его раствором в диспергирующих машинах, где образуются кристаллы мочевины очень малых размеров. В этих условиях образование аддуктов начинается практически сразу и завершается за несколько минут. Аддукт полностью включает весь маточный раствор поэтому в системе присутствуют только две фазы твердая, состоящая из кристаллов аддукта, и жидкая — масло с растворителем. Применение диспергирующих машин способствует более быстрому образованию аддуктов. При применении обычных мешалок необходимое диспергирование кристаллов и мочевины не достигается, аддукты образуются медленно, только на поверхностях кристаллов мочевины - значительная часть мочевины, находящаяся во внутренних зонах крупных кристаллов или комков, в процессе не участвует. Кинетика образования аддуктов при депарафинизации масла, содержащего 11% парафиновых углеводородов, с применением хлористого метилена (СН2С12) в качестве растворителя и такого же объема водного раствора мочевины различной концентрации представлена на рис. 8. [c.282]

    Ответ. Реакция, вызывающая процесс образования зерен, происходит в условиях относительного уменьшения давления реакционноспособных газов — кислорода, НгО или Нг5. Отсюда вытекает, что очень часто, вопреки всяким ожиданиям, общая кинетика процесса определяется числом соударений молекул газа на поверхности. Линейное изменение скорости роста в области образования зерен наблюдали Буйон и Бардолл. Однако не исключено, что ускоренные процессы типа 18 [c.18]


Смотреть страницы где упоминается термин Кинетика процессов условий образования: [c.717]    [c.124]    [c.277]    [c.141]    [c.223]    [c.47]    [c.555]    [c.104]    [c.72]    [c.11]    [c.154]    [c.113]    [c.11]    [c.357]    [c.249]    [c.542]   
Кристаллизация в химической промышленности (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика образования ила

Кинетика процессов

Образования пар процесс

Условия образования



© 2025 chem21.info Реклама на сайте