Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение ацетилена из углеводородных газов

    Опубликована работа [126] по сравнительной оценке различных методов производства ацетилена. Авторы этой работы на основании анализа большого фактического зарубежного и отечественного материала подвергают сомнению правильность вывода о том, что карбидный метод производства ацетилена по экономическим показателям уступает методам производства ацетилена из углеводородного сырья. На основании данных предприятий, действующих в СССР, авторы делают заключение, что по всем показателям (капиталовложения, себестоимость и энергозатраты) ацетилен, полученный окислительным пиролизом природного газа и особенно электрокрекингом, уступает ацетилену, полученному из карбида кальция (табл. V. 10). [c.169]


    Ацетилен является исходным сырьем для синтеза ряда важных продуктов. Перспективными методами получения ацетилена являются термоокислительный пиролиз природного газа и плазменный метод (из углеводородного сырья). Значительное количество ацетилена получают из карбида кальция. [c.20]

    В качестве флегматизаторов иногда используют и горючие вещества. В частности, ацетилен, полученный электрокрекингом метана или высокотемпературным пиролизом углеводородных газов, содержит примеси метана, пропана, бутана и других углеводородов, которые являются хорошими флегматизаторами и препятствуют термическому разложению и взрывному распаду ацетилена более эффективно, чем, например, азот. Ацетилен, флегматизированный данными углеводородами, можно сжимать до высоких давлений и нагревать до высоких температур, не опасаясь его разложения и взрыва. [c.45]

    При рациональном использовании побочных продуктов ацетилен, полученный из углеводородных газов, будет дешевле карбидного. [c.275]

    Получение ацетилена методом термического разложения углеводородов изучалось в СССР и за рубежом. Этот метод основан на мгновенном действии высокой температуры (порядка 1500°) на углеводородную смесь с увеличением числа углеродных атомов в молекуле углеводорода степень нагрева может быть снижена. Существует несколько технологических схем термического разложения углеводородов, различающихся способами подвода тепла и сырья. Наиболее эффективным из них, по-видимому, является термический крекинг с присадкой кислорода, или, как его называют, термоокислительный пиролиз. При разложении углеводородов этим методом наряду с ацетиленом можно получать метанол, водород или азотоводородную смесь для синтеза аммиака. Эти продукты извлекаются из газов, отходящих из установок синтеза ацетилена. Одновременное получение столь ценных продуктов весьма положительно сказывается на экономике процесса. Особенно большой интерес представляет извлечение из отходящих газов аммиака. Из синтез-газа, образующегося при получении 1 т ацетилена, можно выделить около 4,2 т аммиака или 3,4 т метанола, а при ежегодной выработке 60—65 тыс. т ацетилена — 250 тыс. т аммиака. В производстве аммиака методом конверсии для выработки такого количества продукта надо израсходовать свыше 300 млн. м углеводородных газов. [c.18]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]


    До второй мировой войны карбид кальция являлся практически единственным источником получения ацетилена для промышленных целей. Отсутствие разработанных методов не позволяло использовать для производства ацетилена большие ресурсы углеводородов нефти и природного газа, хотя в лабораториях научно-исследовательских институтов многих стран уже велись обширные исследования по определению условий превращения низших парафинов в ацетилен. Между тем пиролиз углеводородов для получения олефинов (этилена и пропилена), а также термический крекинг углеводородов уже давно получили промышленное развитие. Постепенное накопление теоретических и практических сведений позволило создать первые полупро-изводственные установки, а затем и крупное промышленное производство ацетилена на основе высокотемпературного пиролиза углеводородного сырья. [c.64]

    Сырьем для получения аммиака служит смесь азота и водорода. Водород для этой смеси получают разными способами, из которых наиболее распространенными являются конверсия природного газа (метана) и других углеводородных газов комплексная переработка природного газа в ацетилен и синтез-газ фракционное разделение горючих газов, в частности, коксового, методом глубокого охлаждения газификация твердого и жидкого топлива с последующей конверсией окиси углерода электрохимический способ получения водорода. [c.113]

    Важный для развития химической промышленности газ — ацетилен — получается из углеводородных газов при электрокрекинге, термокрекинге с добавкой кислорода и высокотемпературном пиролизе. Эти процессы выгоднее широко применявшегося способа получения ацетилена из карбида кальция, который отличается многоста-дипностью, громоздкостью оборудования, большой энергоемкостью и зпачительпымп капитальными затратами. [c.211]

    При осуществлении процесса превращения углеводородных газов в ацетилен нужно, однако, учесть следующее. Во-первых, выше 1200° все газовые реакции протекают очень быстро. Поэтому, чтобы предотвратить распад ацетилена на элементы, продолжительность пребывания газов в зоне реакции следует свести к минимуму. Во-вторых, поскольку ниже 1200° стабильность ацетилена уменьшается, а стабильность других углеводородов растет, то, чтобы помешать разложению ацетилена и его реакциям с другими газами, выходящие из реактора продукты необходимо очень быстро охлаждать (подвергать закалке). Следует отметить, что получение ацетилена пиролизом парафинов сопровождается также увеличением объема вследствие образования водорода, а поэтому проведение процесса под низким давлением или в присутствии разбавителей должно давать известные преимущества. [c.272]

    В промышленности термические процессы расщепления природных и попутных углеводородных газов, различных фракций нефти, предназначенных для получения моторных топлив, смазочных масел, нефтяного кокса, а также сырья для химической и нефтехимической промышленности (ацетилен, олефины, диеновые и ароматические углеводороды и другие продукты) представляют большой интерес. [c.265]

    Кроме этилена и его гомологов, в промышленности органического синтеза США важную роль приобрел ацетилен. Развитию производства некоторых важных органических продуктов из ацетилена (акрилонитрила, хлорвинила, трихлорэтилена) способствовали получение технической документации из Германии и применение нового более экономичного способа получения ацетилена из углеводородных газов (метод частичного окисления, или метод Саксе). За период 1952—1954 гг. в США построено три завода для получения ацетилена из природного газа по этому методу с общей производительностью 90 000 т в год. [c.26]

    Ацетилен, полученный электрокрекингом метана или высокотемпературным пиролизом углеводородных газов, имеет примеси метана, пропана, бутана, бензола и других углеводородов, которые являются хорошими флегматизаторами. [c.214]

    При оценке себестоимости ацетилена, полученного из углеводородного сырья, по зарубежным данным установлено, что применительно к переработке бензина и природного газа наименьшую себестоимость обеспечивает регенеративный пиролиз. Далее идет окислительный пиролиз, а наиболее дорогой ацетилен получается при гомогенном пиролизе без давления. [c.185]

    Процесс получения ацетилена из углеводородного сырья протекает в одну стадию, менее энергоемок, требует меньших капитальных затрат и, в целом, на 20% экономичнее карбидного процесса. Однако в этом методе ацетилен разбавлен водородом, а это требует более сложной системы его выделения из синтез-газа и очистки. [c.246]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]


    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    Сроки и темпы перехода промышленного органического синтеза с угольного сырья на нефтегазовое и с ацетилена на низшие олефины в разных странах были не одинаковы. В странах Западной Европы, Японии и СССР преобладание низших олефинов в сырьевой базе отрасли стало заметным с 60-х гг. В США этилен и пропилен, полученные из газов крекинга при переработке нефти, применяли наряду с ацетиленом в химической промышленности уже в 20—30-е гг. [3], а современный процесс производства низших олефинов — термический пиролиз углеводородов с водяным паром — выделился из процессов нефтепереработки и превратился в основной промышленный метод получения этилена и пропилена в период 1920—1940 гг. Работы в области производства и химического использования нефтяного и газового сырья проводились в эти же годы и в СССР. Вскоре после окончания войны вступили в строй нефтехимические заводы в гг. Сумгаите, Грозном, Куйбышеве, Уфе, Саратове, Орске и других городах. На этих предприятиях синтетический этанол, изопропанол и ацетон вырабатывались на основе этилена и пропилена, полученных в процессе пиролиза углеводородного сырья [4]. [c.6]

    Существуют определенные аналитические характеристики пламени. Пламя, безусловно, должно быть стабильным, безопасным и стоимость компонентов для его поддержания должна быть невысока оно должно иметь относительно высокую температуру и медленную скорость распространения, что повышает эффективность десольватации и получения пара и в результате приводит к большим сигналам эмиссии, абсорбции или флуоресценции. К тому же, пламя должно обеспечивать восстановительную атмосферу. Многие металлы в пламени имеют тенденцию образовывать устойчивые оксиды. Эти оксиды тугоплавки и не легко диссоциируют при обычных температурах пламени. Для повышения степени образования свободных атомов их необходимо восстановить. Восстановление может быть достигнуто почти в любом пламени, если создать скорость потока горючего газа большей, чем это необходимо по стехиометрии горения. Такое пламя называют обогащенным. Обогащенные пламена, образуемые такими углеводородными горючими, как ацетилен, обеспечивают прекрасную восстановительную атмосферу, обусловленную большим количеством углеродсодержащих радикальных частиц. [c.682]

    В послевоенные годы производство ацетилена продолжало расширяться, так что уже к 1960 г. ни одна промышленно развитая страна не обходилась без собственного ацетилена, причем расход ацетилена на промышленный органический синтез возрос втрое по сравнению с уровнем военных лет [417[. До настоящего времени основным методом получения ацетилена остается карбидный, однако последние 15 лет характеризовались стремительным ростом числа заводов, перерабатывающих дешевые углеводороды, преимущественно природный газ, в ацетилен [418, 419 3, стр. 435— 436]. К 1968 г. доля углеводородного ацетилена в общей мировой продукции его достигла 30% [420, стр. 402]. Главными потребителями ацетилена, как и в 1930—1940-е годы, являются производ- [c.90]

    По опубликованным в зарубежной печати технико-экономическим анализам методов производства ацетилена в большинстве случаев отдается предпочтение получению ацетилена из углеводородов Однако в ряде случаев карбидный ацетилен оказывается более дешевым. Это объясняется, во-первых, конъюнктурой мирового рынка, а также относительно дорогим природным газом и дешевой гидроэнергией (США) или отсутствием собственной углеводородной базы (ФРГ). [c.405]

    Другим технически важным свойством ацетилена является его раст1юримость, значительно более высокая, чем у других углеводородных газов. Так, в 1 объеме воды при 20 °С растворяется около 1 объема ацетилена, а при 60 °С растворяется 0,37 объема. Растворимость снижается в водпелх растворах солей и Са(0Н)2. Значительно выше растворимость ацетилена в органических жидкостях при 20 °С и атмосферном давлении она составляет (в объемах щетилеиа на 1 объем растворителя) в метаноле 11,2, в ацетоне 23, в диметилформамиде 32, в N-метилпирролидоне 37. Растворимость ацетилена имеет важное значение при его получении и выделении з смесей с другими газами, а также в ацетиленовых балл )нах, где для повышения их емкости по ацетилену и снижения авления используют растворитель (ацетон). [c.77]

    Обычно углеводородные газы, получаемые при деструктивпой переработке нефти, состоят нз алканов и алкенов до включительно. Водород — также постоянный компонент газов переработки. В отдельных специальных случаях в состав углеводородов газа входят бутадиен и иногда этин (ацетилен) и его гомологи. В табл, 56 даны физические свойства компонентов газа. Основное сырье для химической переработки — непредельные углеводороды. По масштабам производства на первом месте стоит выработка компонентов моторного топлива. Для получения полимерного бенйина используются бутены и пропен для изооктана — изобутен с добавкой нормальных бутенов для производства алкилбензинов — изобутан и алкены от jHg и выше, преимущественно бутены для алкилирования бензола — этен и пропен для производства нео-гексана — изобутан и этен. [c.335]

    Ацетилен являющийся важнейщим сырьем органического синтеза, до настоящего времени в основном производится из карбида кальция, В 1958 г, 60% карбида было переработано на ацетилен. В последнее время увеличивается промышленное получение С2Н2 из метана и других углеводородных газов (см. главу XVni). Помимо промышленности органического синтеза, ацетилен применяется для резки и сварки металлов. [c.343]

    Большой интерес к термической переработке предельных углеводородных газов объясняется в первую очередь тем, что в результате термической переработки химически инертных газов образуются этилен, ацетилен и пропилеи, являющиеся важнейшим сырьем промышленности тян елого органического синтеза. Важным нанравлением высокотемпературной переработки является также получение высококачественной сажи, водорода и синтипгаза. Благодаря тому, что запасы предельных газов весьма велики, на их основе может быть организовано крупное нефтехимическое производство. С другой стороны, термические превращения низших алканов относительно просто могут быть исследованы эксне- )гшентально и являются одной из наиболее благоприятных областей для изучения теоретических положений химической кинетики гомогенных газовых реакций. Последние положения явились причиной появления многочисленных экспериментальных и теоретических работ по пиролизу газов. [c.47]

    В б,дизкой связи с окислительным пиролизом стоит по.лучение водорода частичным окислением углеводородных газов, на котором мы здесь останавливаться не будем. В соответствии с режимом горения окислительный пиролиз можно разделить на две группы. ]Зо-первых, горение на насадке и.ли без нее (главным образом для получения этилена из этана и пропана), во-вторых, высокоскоростное турбулентное и детонационное сгорание с высокой температурой и с малой длиной зоны реакции (главным образом при переработке метана на ацетилен или сажу). [c.54]

    Разработка способов иолучения ацетилена из углеводородных газов, более дешевого но сравнению с карбидным ацетиленом, позволит повысить технико-гжономическую эффективность различных способов получения мономеров на основе ацетилена. [c.649]

    Апализ выделенных фракций предельных и непредельных углеводородов. Более сложным п трудным является анализ па описанном приборе газов нефтепереработки (крекинга, пиролиза и др.), а также компопентов термической переработки природных газов. Присутствующие в них непредельные углеводороды мешают получению простой разгонкой индивидуальных углеводородных газов. При температурах от —130" до —160° давление паров этилена примерно в 3—4 раза превышает давление паров этана. Давление паров пропилена лишь не намного выше давления паров пропана. Ацетилен занимает промежуточное положен1 о между этаном и пропаном. [c.103]

    Известны многочисленные методы передачи тепла от твердых или жидких тел к углеводородным газам с целью превращения углеводородов в ацетилен (прямое смешение углеводородов с горячими газами см. п. 4). В нескольких патентах [19] описаны различные варианты печи типа На5с11е- УиК с двумя (или несколькими) камерами, пмеющими каналы между огнеупорными плитками, уложенными в шахматном порядке или другим способом, через которые поочередно проходит нагревающий газ и газ, подлежащий пиролизу. В работе [20] был предложен метод, включающий поочередный нагрев до 1100— 1600° С углеродного стержня или сжатой углеродной массы с помощью пламени и пиролиз сырья. Вторая стадия цикла- прекращается, когда температура углерода снизится до 870° С. Согласно другому методу [21], линии для подвода газов к печи должны быть неподвижны, а каналы печи должны вращаться вокруг центральной оси со скоростью 10—100 об/мин, так что через них по очереди проходит нагревающий газ и углеводород, подвергаемый пиролизу. Получению ацетилена и смесей ацетилена и этилена в трубчатых печах пиролиза были посвящены работы Мориной [4 ] п Зубковой [5 —7 ]. [c.354]

    Углеводородные газы (метан, зтан, пропан, бутан, этилен, ацетилен) находят применение при производстве пластмасс, синтетических каучуков, химических волокон и т.д. Водород, хлористый водород, оксид углерода и другие широко используются при получении продуктов органического синтеза. Аммиак применяется в холодильной технике, при производстве удобрений и т.д. [c.280]

    Общим в производстве этих препаратов является конденсация соответствующих фенолов с монохлорук-сусной кислотой в щелочной среде. Монохлоруксусная кислота вырабатывается из углеводородных газов нефтеперерабатывающих заводов. Полученный из пропана или бутана ацетилен подвергается хлорированию до тетрахлорэтана. Последний при дегидрохлорировании превращается в трихлорэтилен> прекрасный, негорючий жидкий растворитель, являющийся одновременно основ- [c.316]

    При термоокислительном пиролизе углеводородов необходимое для реакции разложения углево.п ородов тепло получается при их непосредственном частичном сжигании в реакционной зоне или при сжигании других углеводородных газов в той же зоне. При этом пиролиз углеводородов осуществляется в факеле горения, что позволяет избежать как больших расходов электроэнергии при электрокрекинге, так и трудностей при передаче тепла в случае других пирогенетических способов получения ацетилена. Ацетилен можно получить термо-окислнтельным пиролизом многих углеводородов метана, этана, пропана и других, включая жидкие углеводороды. [c.15]

    Новым способом получения органических и неорганических гидридов кремния является предложенное Клазеном [84, 85] восстановление элементарного кремния, ферросилиция или карбида, кремния водородом или углеводородными газами в электрической дуге при температуре около 1500°. Так, из карбида кремния и природного газа в этих условиях в специально приспособленной для этой цели вольтовой дуге удается получать с отходящими газами (ацетилен, этилен, водород, исходный газ) диметил-оилан, а также SIH4. [84]. Из элементарного кремния (или ферросилиция) [c.413]

    Изучаются возможности снижения себестоимости ацетилена. Разрабатываются процессы плазмохимического получения ацетилена из углеводородного сырья и угля, а также получения смесей ацетилен — синтез-газ и ацетилен—метанол окислительным пиролизом метана (4СН - - Оз С2Нз+ 2С0 + 7Н.,). [c.356]

    Получение ацетилена и хлористого водорода. Современное промышленное производство ацетилена основано на переработке углеводородного сырья — природного газа, этана, газового бензина и других нефтяных про- дуктов — электрокрекингом, термоокнслнтельным пиролизом и др. Находит применение и старый метод получения ацетилена разложением карбида кальция водой. Ацетилен, используемый для синтеза хлоропрена,"должен отвечать следующим требованиям [65, с. 78]  [c.226]

    Прямой метод получения ацетилена из углеводородного сырья был открыт еще в начале 1862 г. Вертело [1], который получил ацетилен действием электрических разрядов на метан. В 1866 г. Маклеод [2 ] демонстрировал опыт образования ацетилена при сжигании струи кислорода в атмосфере метана, а в следующем году Рит [3] показал, что ацетилен образуется в пламени бунзеновской горелки, когда горение происходит внутри трубки (у дна горелки). В 1880 г. Юнгфлейш [4] описал лабораторную установку для получения ацетилена путем неполного сжигания метансодержащего газа. В этой установке ацетилен поглощался из сжигаемого газа аммиачным раствором меди, а затем регенерировался разложением ацетиленида меди кислотой. Другие исследователи впоследствии наблюдали образование ацетилена среди продуктов высокотемпературного пиролиза метана и других углеводородов. [c.159]

    Eisenhut предложил получать уголь, ацетилен и водород при помощи действия вольтовой дуги при температурах выше 2500° та пары углеводородов-под давлением. Углеводороды, подобные метану, пропускаются через дугу с такой скоростью, чтобы отношение скорости (в м /час) к мощности дуги (в киловаттах) было меньше 0,6. Газы, содержащие сажу, могут быть направлены в охладительную камеру, где ламповая сажа отделяется постепенным охлаждением i . Процессы очистки сажи обычно состоят в нагревании ее до температур, достаточно высоких для удаления летучих углеводородов. Например, сажа, полученная действием вольтовой дуги на углеводородное масло, может быть, как утверждает Gobert , освобождена от воды и неизмененного масла нагреванием ее до 350—400°. [c.243]

    Относнтельно новый экономичный способ, подобный совмещешшм процессам, состоит в получении В. из легким бензинов, I2 и O-j. Поток углеводородного сырья после пиролиза содержит этилен и ацетилен в равном мольном соотношении. Смесь газов сначала гидрохло-рируется, а затем хлорируется до дихлорэтана, из к-рого в основном пиролизом получают В. [c.218]

    Ацетилен, служивший до создания крупной нефтехимич. пром-сти единственным видом сырья для получения многих мономеров (напр., хлоропрена, ви-лилацетата, винилхлорида, акрилонитрила), до 60-х гг. получали только из карбида кальция. Для этого процесса характерны высокая материалоемкость, значительный расход электроэнергии, тяжелые условия труда. В последующие годы в ряде стран была реализована технология произ-ва ацетилена из углеводородного сырья (табл. 8), в первую очередь методом термоокислительного пиролиза природного газа. Эксплуатационные и капитальные затраты на получение ацетилена этим методом в 1,5 раза ниже, чем при его произ-ве из карбида кальция. В СССР в 1970 из природного газа получали половину всего производимого ацетилена. [c.288]

    В производстве ацетилена из углеводородного сырья большое значение имеют смеси, в которых присутствуют ацетилен и водород. По данным рис. VII1-2 можно хотя бы ориентировочно судить о взрываемости газа пиролиза при различных способах получения [c.365]


Смотреть страницы где упоминается термин Получение ацетилена из углеводородных газов: [c.371]    [c.268]    [c.288]    [c.305]    [c.369]    [c.384]   
Смотреть главы в:

Основы технологии синтеза каучуков Изд 2 -> Получение ацетилена из углеводородных газов




ПОИСК





Смотрите так же термины и статьи:

Ацетилен получение

Получение газа

Углеводородный тип газов



© 2025 chem21.info Реклама на сайте