Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолы реакции по ароматическому

    Реакция пероксидных радикалов с фенолами и ароматическими аминами [c.99]

    Быстрый обрыв цепей по реакции пероксидных радикалов с фенолами и ароматическими аминами, как уже отмечалось, связан с тем, что R02- —активные окислители, а InH — восстановители. Однако в окисляющихся углеводородах ингибиторы приходят в контакт и с другими окислителями, прежде всего с кислородом и гидропероксидами. Реакции ингибитора с этими окислителями могут отразиться на кинетике ингибированного окисления и длительности тормозящего действия ингибитора. [c.111]


    Возможно гидрирование фенолов в ароматические углеводороды с удалением кислорода, что имеет важное значение при переработке сланцев н каменноугольных смол, которые содержат большое количество малоценных фенолов. Реакции протекают с большим трудом и требуют высокого давления (10—30 МПа) и температуры 300—600 °С, катализаторов, стойких к сернистым соединениям и неактивных по отношению к ароматическому кольцу., Эти катализаторы представлены главным образом сульфидами, например, никеля, кобальта, молибдена и вольфрама в различных сочетаниях. [c.45]

    Фенолы и алкилфениловые эфиры сравнительно легко алкилируются нормальными олефинами, циклогексеном и диолефинами в присутствии эфирата фтористого бора, тогда как для реакции ароматических углеводородов с олефинами этот катализатор является мало эффективным. [c.168]

    Антиокислители, обрывающие цепной процесс окисления по реакции с пероксидными радикалами, — фенолы, нафтолы, ароматические амины, аминофенолы. Это наиболее эффективные и щироко применяемые антиокислительные присадки. [c.356]

    Основной реакцией, обрывающей цепи окисления, является взаимодействие молекул антиокислителей, имеющих слабые связи О—Н и N—Н, с пероксидными радикалами. При этом активный пероксидный радикал заменяется на радикал ингибитора (1п ), не способный продолжать цепи окисления [5]. Взаимодействие фенолов и ароматических аминов с пероксидными радикалами протекает с очень высокой скоростью. Константа скорости этой реакции на два порядка выще, чем реакции взаимодействия антиокислителя с алкильными радикалами. От активности радикала ингибитора (1п) во многом зависит эффективность ингибирующего действия антиокислителя. Одним из [c.356]

    Главной реакцией диазосоединений без выделения азота является реакция азосочетания, в ходе которой группа Аг—М = М— замещает водород ароматического ядра в таких соединениях, как фенолы или ароматические амины, например  [c.235]

    Азокрасители образуются в результате реакции электрофильного замещения — действия диазокатиона на фенолы и ароматические амины. Диазокатион, являясь слабым электрофильным реагентом, замещает атом водорода только в активном п-положении (если оно занято, то в о-положении) ароматического кольца, например  [c.117]

    Фенолы и ароматические эфиры алкилируются очень легко. Акти- вирующее влияние ОН-группы или алкокси-группы в реакции Фриделя—Крафтса настолько велико, что парализует дезактивирующее действие нитрогруппы. Например, о-нитроанизол алкилируется, в то время как нитробензол совершенно не алкилируется. [c.294]


    В качестве примера нитрования ароматических соединений смесью нитрата с уксусной кислотой укажем на нитрование фенола. Раствор фенола (5 г) в ледяной уксусной кислоте (10 г) добавляют по каплям при сильном перемешивании к смеси 8 г u(N03)2 и 25 г ледяной уксусной кислоты (реакцию необходимо проводить с охлаждением, поддерживая температуру 26°). Через 20 мин. после первого приливания раствора фенола реакция заканчивается. При вливании реакционной смеси в 10 мл воды выделяется продукт реакции в виде кристаллической массы, которую отфильтровывают и промывают холодной во- [c.436]

    РЕАКЦИИ АРОМАТИЧЕСКОГО ЯДРА. Гидроксильная группа является источником электронов для ароматического ядра фенолов, которые в результате этого легко вступают в реакции электрофильного ароматического замещения. Все процессы, рассматриваемые в настоящем разделе, обусловлены высокой электронной плотностью. [c.296]

    К наиболее распространенным ингибиторам этого класса относятся замещенные фенолы и ароматические амины. В результате исследования [10] механизма ингибирования цепной реакции окисления различных углеводородов выделены два типа ингибиторов  [c.165]

    При высоких температурах радикал, образовавшийся из замещенного фенола или ароматического амина, может оторвать водород от полимерной цепи и начать новую реакцию. Синергетический эффект наблюдается в присутствии добавок, образующих с радикалом антиоксиданта устойчивые продукты. [c.181]

    Ингибиторы, обрываюш ие цепи по реакции с пероксидными радикалами. К ним относятся наиболее эффективные и широко используемые на практике фенолы, нафтолы, ароматические амины и диамины, аминофенолы и др. Все эти соединения обладают восстановительными свойствами и быстро реагируют с пероксидными радикалами. [c.97]

    Стехиометрия и продукты реакции. Фенолы и ароматические амины реагируют с пероксидными радикалами по реакции ROj. -f InH ->- ROOH + In. [c.99]

    Константы скорости реакции К0г-+1пН. Фенолы и ароматические амины реагируют с пероксидными радикалами очень быстро — с константой скорости при 60 °С порядка 10 — 10 л/(моль-с). Представляет интерес выяснить, является ли такая высокая активность ингибиторов результатом слабой связи 1п—Н. Сравним константы скорости реакции двух реакций К02-+СНз0—ОН и КОг-Ч-СеНзСН(СНз)2, теплоты [c.101]

    Реакция In- с ROOH. Пероксидные радикалы очень быстро реагируют с фенолами и ароматическими аминами. Главная причина этого — полярная структура переходного состояния R02 - -Н---In (см. с. 102). Но именно это и является причиной сравнительно быстрого протекания обратной реакции In. + HOOR -> InH + ROj- — q [c.108]

    Ингибиторы, обрываюи ие цепи по реакции с перекисными радикалами. К ним относятся фенолы, ароматические амины, амино-фенолы, гидроксиламины, ароматические многоядерные углеводороды. Эффективность тормозящего действия этих ингибиторов зависит от константы скорости реакции с НОа и стехиометрического коэффициента ингибирования /—число цепей, которое обрывает один ингибитор очень часто / = 2 в соответствии со схемой тор- [c.159]

    Реакция ароматических соединений с дизамещенными фор-мамидами в присутствии оксихлорида фосфора, называемая реакцией Вильсмейера или Вильсмейера — Хаака, представляет собой наиболее общий метод формилирования ароматических колец [262]. Однако она применима только к таким активным субстратам, как амины и фенолы. Ароматические углеводороды и гетероциклические соединения тоже подвергаются формили-рованию, но лишь в том случае, если они намного более реакционноспособны, чем бензол (например, азулены, ферроцены). И хотя наиболее широко используется М-метил-М-фенилформа-мид, другие арилалкил- и диалкиламиды также находят применение [263]. Вместо Р0С1з можно брать СОСЬ. Реакция проведена и с амидами других кислот, что приводит к образованию кетонов (в действительности это пример реакции 11-15), но это случай редкий. Атакующей частицей [264] выступает ион 26 [265], а механизм, по-видимому, может быть изображен следующей схемой  [c.360]

    Фенолы могут восстанавливаться до циклогексанонов, по-видимому, через образование еиола. Часто восстановлению подвергают и гетероциклические соединения. Так, из фурана получают тетрагидрофуран. Реакцию ароматических соединений бензольного ряда обычно не удается остановить на стадии образования диена или олефина, поскольку эти соединения восстанавливаются легче, чем ароматические субстраты. Так, при обработке бензола 1 молем водорода образуется /з моля [c.185]

    Получение азокрасителей. Азокрасители обычно получают путем взаимодействия диазосоединений (т. е. солей диазония,образующихся при диазотировании первичных ароматических аминов) с фенолами или ароматическими аминами эту реакцию называют реакцией азосочетания. Например, при сочетании диазосоединения из анилина с фенолом образуется азокраситель оранжевого цвета по схеме [c.397]


    В реакции азосочетания, приводящей к получению азокраси-телеи, всегда участвуют диазокомпоненты (диазосоединення самого различного строения) и азокомпоненты (различные фенолы и ароматические амины). Вот некоторые примеры получения простейших азокрасителей. Азосочетанием диазосульфаниловой кислоты с диметиланилином получают диметиламиноазобензолсульфокис-лоту  [c.236]

    Вскоре было найдено, что хлористый диазобензол 6H5.N2. l легко соединяется с фенолами и ароматическими основаниями. Так был найден способ получения азокрасителей в широком масштабе. Эти реакции демонстрировали большие успехи органического синтеза, но его огромные возможности впервые показал М. Бертло . [c.243]

    Б. Реакции ароматического кольца. Фенолы очень легко вступают в реакции электрофильного замещения с образованием орто- п лара-продуктов. Часто трудно бывает остановить реакцию на стадии образования монопроизводного. При взаимодействии разбавленной азотной кислоты с фенолом быстро образуются о- и л-нитрофенолы. В условиях нитрования бензола фенол дает сразу тринитрозамещенный продукт — пикриновую кислоту (2,4,6-тринитрофенол). При галогенировании фенола в водном растворе под действием хлорной или бромной воды образуются соответствующие тригалогенофенолы. Даже такой слабый электрофил, как нитрозоний-катион N0+ (возникающий в подкисленном растворе азотистой кислоты), превращает фенол н его /г-нитрозопроизводное. [c.87]

    Восстановление фенолов.— Другой метод восстановления фенолов в ароматические углеводороды имеет особенно большое значение для химии природных соединений, так как он применим для работы с малыми количествами вещества (50—200 мг) и реакция проводится в таких мягких условиях, что устраняется возможность перегруппировки. Метод был разработан Кеннером (1955) и использован Пелльтье для работы с полумикроколичествами веществ (1958). Раствор фенола и диэтилового эфира фосфористой кислоты в четыреххлористом углероде обрабатывают тризтиламином и оставляют на 24 ч для полного выпадения солянокислого триэтиламина (реакция 1). Затем полученный а.рилдиэтилфосфат отделяют, растворяют в тетрагидрофуране и восстанавливают натрием в жидком аммиаке (реакция 2) [c.187]

    Реакция сочетания. — Соли диазония легко реагируют с фенолами и ароматическими аминами с образованием ярко окрашенных азосоедиБений, в которых два ароматических кольца связаны между собой азогруппой —N = N—. Взаимодействие протекает довольно спокойно. Эта реакция известна под названием реакции сочетания. Так, хлористый фенилдиазоний быстро сочетается с фенолом в щелочном растворе при 0°С, образуя оранжевый кристаллический -оксиазобен-зол (или п-бензолазофенол т. пл. 159 °С)  [c.270]

    Получение мояо- и дигалогенпроизводныя фенолов и ароматических аминов представляет особый интерес для препаративных целей. Нежелательное в этом случав замещение хлором и бромом, иногда даже во всех активируемых заместителями положениях, происходит часто уже прн проведении реакции в мягких условиях. Монохлорирование (бромврование) фенола эсдором (бромом) идет на холоду преимущественно в 4-положенле, а при 150—180° С — в 2-положение, [c.150]

    В некоторых случаях находит применение разбавленная азотная кислота, например при нитровании легко нитрующихся фенолов или парафиновых углеводо-.- родов. Концентрированная азотная кислота и нитрующие смеси в большинстве слу- л чаев совершенно непригодны для нитрования феполовг так как при атом образуется jj большое количество побочных продуктов. Разбавленная азотная кислота является. слабым нитрующим агентом и довольно сильным окислителей, что объясняется ненз- менным присутствием азотистой кислоты, которая вообще затрудняет нитрование, но А оказывает сильное каталитическое влияние на нитрование фенолов и ароматических аьшпйи [85[. Однако разбавленная азотная кислота имеет ограниченное применение, так как ео нитрующее действие проявляется лишь при повышенных температурахт когда уже превалируют побочные реакции окисления. [c.380]

    Образование ргутьорганических соединений может протекать также ппи действии ацетата ртугп на гомологи бензола [97]. О дальнейших исследованиях по мэрку-рированию ароматических соединений и теоретических аспектах реакции см [93]. Скорости меркурирования ароматических соединений различны особенно легко-реагируют амины, фенолы п ароматические простые эфиры, медленнее — ароматически углеводороды, например бенаол, и особенно трудно меркурируются галоген- и нитпо-замещенные производные бензола. [c.652]

    Этот метод синтеза применим только для получения сложных виниловых эфиров, простых виниловых эфиров (из фенола) и винил-сульфидов (из тиофенола или алкилтиола) [164]. Для проведения реакции ароматическую или алифатическую карбоновую кислоту нагревают саму по себе или в каком-нибудь растворителе с дивинил-ртутью, полученной из хлорида ртути(II) и винилмагнийбромида в тетрагидрофуране [165]. В отсутствие растворителя реакция обычно проходит более чем на 50% за время меньше 5 мин при нагревании на паровой бане. Для безопасности реакцию необходимо проводить в хорошо вентилируемой тяге, поскольку дивинилртуть высоко токсична. Если проводить реакцию в инертном растворителе, можно выделить образующийся в качестве промежуточного соединения винилртутный эфир R 00Hg H = H2. Выходы виниловых сложных эфиров составляют от 38 до 74%. [c.306]

    Реакционная способность элементарного иода в реакциях замещения в ароматическом ядре незначительна, так что прямое. иодпроваяне возможно только для фенола и ароматических аминов. Добавление окислителей (концентрироваиная серная кислота, азотная кислога или окнсь ртути), которые необходимы для образования иод-катион ов соответственно для связывания образующегося свободного иодистого водорода, также способствует прямому иодированию инертных ароматических соединений. [c.411]

    При установлении механизма действия азотистой кислош Ингольд с сотрудниками в первую очередь исходят из того, что нитрование фенолов и ароматических аминов, подчиняясь обычным законам ориентации, является электрофильньш замещением. Следовательно, механиэм его должен включать электрофильный реагент. Учитывая, что скорость реакции ири нитровании в присутствии азотистой кислоты зависит от концентрации последней (и не аависит от концентрации азотной [c.194]

    Аминометилирование по Манниху - удобный метод получения 4-диалкилами-нометильных производных пространственно-затрудненных фенолов в тех случаях, когда в реакциях используется формальдегид [27, 28]. Провести препаративно аминометилирование таких фенолов с ароматическими альдегидами в условиях, описанных в [27, 28], не удается [29]. [c.477]

    Как известно, первой стадией реакции алкилпрования гликоля или же дифенола по Вильямсону является взаимодействие диола с основанием, приводящее к депротонированию с образованием алко-голят-(фенолят-)иона Ароматические диолы — гораздо более спльпые [c.171]


Смотреть страницы где упоминается термин Фенолы реакции по ароматическому: [c.492]    [c.345]    [c.450]    [c.396]    [c.328]    [c.310]    [c.782]    [c.247]    [c.362]    [c.1707]    [c.72]    [c.218]    [c.288]    [c.18]    [c.368]   
Фенолы (1974) -- [ c.31 , c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм реакции перекисных радикалов спирта с фенолами и ароматическими аминами

Реакции ароматического ядра фенола

Реакции пероксидных радикалов с фенолами и ароматическими аминами

Хиназолин галоидированный реакция с ароматическими углеводородами и фенолами

Хлорпикрин, реакция с ароматическими углеводородами и фенолом

Эфиры реакция с ароматическими углеводородами и фенолами



© 2025 chem21.info Реклама на сайте