Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сероуглерод катализаторы

    Присутствие сероуглерода в четыреххлористом углероде дезактивирует катализатор — хлорид сурьмы (V), так как при- водит к восстановлению ее в хлорид сурьмы (П1). В отсутствие сероуглерода,катализатор практически не расходуется, потеря его активности в течение одной операции составляет около 1%. [c.395]

    Процесс ведут в две стадии в реакторе с мешалкой при 60°С. Сначала в присутствии металлической сурьмы образуются четыреххлористый углерод и хлорид серы. Четыреххлористый углерод отгоняют, к хлориду серы добавляют новую порцию сероуглерода (катализатор — железные опилки) и размешивают при 60°С. Выпавшую в осадок серу отфильтровывают и используют для получения сероуглерода. Четыреххлористый углерод очищают ректификацией. [c.202]


    Сероуглерод-сырец очищается от серы, сероводорода и других примесей ректификацией. Для улавливания сероуглерода отходящие газы после конденсации сероуглерода-сырца подвергают охлаждению до —20 °С в специальных охладителях. Для извлечения остатков сероуглерода охлажденные газы подвергают абсорбции вазелиновым маслом или активированным углем. Регенерация серы из сероводорода происходит в окислительных печах Клауса на катализаторе (боксите). [c.91]

    Более современным методом является получение сероуглерода прямым синтезом из метана или природного газа с парами серы в присутствии катализатора (силикагеля). Процесс — непрерывный, проходит при 500—700 °С. В каталитическую камеру, изготовленную из хромоникелевой стали, поступает смесь метана и паров серы. Реакция проходит по уравнению [c.91]

    Сера взаимодействует с метаном при 800—1000° и 1125°, давая высокие выходы сероуглерода [4, 83]. В разработанном недавно улучшенном процессе эта реакция осуществляется нри температуре ниже 700° в присутствии катализатора — силикаге.тя или активированной окиси алюминия [29]. За один проход при 600° получаются выходы сероуглерода 90%. В отсутствии катализатора реакция серы с метаном требует гораздо более высокой температуры, чем с другими парафинами. [c.91]

    Сероуглерод образуется из метана и серы на катализаторе—силикагеле при температуре 566—621 °С, избыточном давлении от 1,4 до 2,1 ат и объемной скорости 400—600 ч . [c.331]

    Представляет интерес тот факт, что одна и та же примесь, введенная в полимеризационную систему не с катализатором, а с мономером, может оказать совершенно иное действие на ход полимеризации изопрена. Так, показано [51], что введение сероуглерода непосредственно в шихту позволяет значительно расширить диапазон отношений Al/Ti, при которых получается активный катализатор. Наряду с этим повышается стереоспецифическое действие катализатора, так как подавляются процессы, приводящие к образованию олигомерных продуктов. В то же время незначительные количества сероуглерода в катализаторе уменьшают активность и приводят к снижению молекулярной массы полимеров [48]. [c.214]

    Как видно из таблицы, в каждой серии опытов с разными образцами промышленного катализатора У32 качественная картина одна и та же при использовании свежего катализатора количество сероводорода в газах гидрирования велико (первый опыт), затем оно резко падает и, уменьшаясь от опыта к опыту, достигает ничтожной величины. Параллельно уменьшается содержание серы в катализаторе, т. е. определенная часть серы выделяется из катализатора легко, но затем выделение серы идет с трудом и почти прекращается. После введения в гидрируемое сырье (бензол) примеси сероуглерода содержание серы в катализаторе сначала увеличивается, но потом снова снижается. [c.269]


    Сопоставлением радиоактивности серы в газе и в катализаторе после введения меченого сероуглерода показано, что до 10,6% серы в катализаторе после удаления избыточной серы было радиоактивным, т. е. произошел обмен между серой сырья и серой катализатора. [c.269]

    Быстрым охлаждением газовой фазы (закалка равновесия) получают сероуглерод S2. Его синтезируют также из метана (природный газ) и паров серы при 500—700 °С с применением силикагеля в качестве катализатора  [c.362]

    Осернение обычно проводится сероводородом или легко превращающимися в сероводород соединениями — сероуглеродом, меркаптанами, органическими сульфидами и дисульфидами, которые дозируются в сырьевой поток. Расход осерняющего реагента (в пересчете на серу) достигает 8—10% от массы катализатора [241 ], содержание связанной катализатором серы составляет 4—6%. [c.112]

    Исходный бензол должен быть очищен от сернистых соединений (сероуглерод, тиофен) и тщательно обезвожен, это повыщает активность катализатора и качество продуктов. [c.423]

    Имеются, однако, методы, позволяющие повышать растворимость угля путем его обработки при более низких температурах. Это, например, реакции, идущие под действием катализаторов Фриделя — Крафтса. В качестве таких катализаторов использовали трифторид бора и фенол [I], и-толуолсульфокислоту и толуол 12] сообщается также ([3] о взаимодействии битуминозных углей с пропилхлоридом в сероуглероде при 45 °С в присутствии хлористого алюминия в качестве катализатора. Несколько иной подход был использован в работе [4], где битуминозный уголь подвергали восстановительному алкилированию под действием натрия и алкилгалогенидов. [c.301]

    Первоначально алкилирование углей проводили под действием алкилхлоридов в качестве алкилирующих агентов и хлористого алюминия как катализатора. Навеску 10 г среднелетучего угля (24,6% летучих) тонко измельчали и суспендировали в 50 мл сероуглерода, а затем в суспензию добавляли 10 г порошкообразного хлористого алюминия. Полученную смесь при 45 °С обрабатывали 0,25 моль алкилхлорида. Используемые алкилхлориды содержали от 3 до 18 атомов углерода. Обычная продолжительность алкилирования составляла 3 ч, но в случае алкилхлоридов ie и i8 для завершения реакции требовалось 24 ч. Во всех опытах происходило присоединение алкильных групп к ароматическим молекулам угля, о чем можно было судить по увеличению массы образца. По приращению массы находили число присоединенных алкильных групп в расчете на 100 С-атомов угля (рис. 1). Оно составило 2—3 алкильные группы на 100 С-атомов. Исключение составлял пропилхлорид, в случае которого на 100 атомов углерода приходилось 7 пропильных групп. Видимо, это связано со способностью небольшой пропильной группы присоединяться в различные положения ароматических составляющих угля. С увеличением размера алкильных групп возможности замещения становятся более ограниченными, и это снижает степень алкилирования. Описанный процесс давал лишь незначительное повышение растворимости угля. Так, необработанный образец растворяется в пиридине на 27,2%, а в хлороформе на 47о алкилирование увеличивает растворимость в пиридине до 35%, а в хлороформе до 16%. При холостом опыте было показано, что повышение растворимости угля связано не только с действием хлористого алюминия. [c.302]

    Катализаторы, используемые при паровой конверсии углеводородов, низкотемпературной конверсии окиси углерода и метанирования, легко отравляются сернистыми соединениями. В исходном сырье могут быть в качестве примесей сероводород и такие органические соединения серы, как меркаптаны, сероуглерод, сероокись-углерода, дисульфиды и тиофен. [c.59]

    В работах по исследованию восстановления диоксида серы с использованием катализаторов относительно низкой активности (к ним относится боксит) имеются указания, что с понижением температуры процесса или с увеличением объемной скорости газа наблюдается. повышенный выход сероуглерода [7,8]. [c.65]

    Окисные железные катализаторы регенерируют продувкой водяным паром, расплавляющим и удаляющим серу. Серу можно также экстрагировать сероуглеродом. После этих операций сульфиды железа окисляют воздухом. [c.178]

    В литературе имеются сведения об отравлении различных катализаторов сернистыми соединениями, описаны также некоторые закономерности этого процесса. Однако данных по отравляемости катализатора никель на кизельгуре, используемого в процессе получения циклогексана, мы не нашли. Поэтому представляло большой интерес изучить поведение этого катализатора в условиях гидрирования бензола, содержащего наиболее часто встречающиеся примеси — тиофен и сероуглерод. [c.115]

    В качестве сырья использовали химически чистый бензол с добавлением определенного количества химически чистого тиофена или сероуглерода. Содержание сернистых соединений в исходном бензоле принимали значительно большим по сравнению с практическим. По принятой методике при относительно малых затратах времени можно с достаточной точностью судить об отравляемости элементарного объема катализатора, находящегося в промышленном реакторе. [c.115]


    Отравляемость катализатора никель на кизельгуре сероуглеродом изучали по той же методике, что и тиофеном. Результаты экспериментов на измельченном катализаторе показывают [c.120]

    Отравление сероуглеродом неизмельченного катализатора в первый период времени идет значительно интенсивнее, чем отравление измельченного (рис. 9). Соотношение количеств пропущенной сероуглеродной и тиофеновой серы на неизмельченном катализаторе следующее при снижении глубины превращения на 10%—0,2 и 0,15% на 50% — [c.121]

    Полимеркаптаны Гидразин + сероуглерод Катализаторы ионных реакций (например, ВРз) [c.152]

    Термическое взаимодействие метана с водяным паром происходит при 1200—1300°. В присутствии никелевого катализатора взаимодействие становится возможным при 700—800°. Каталитический спозоб, в котором природный газ (в целях предотвращения отравления никелевого катализатора) должен предварительно освобождаться от сернистых соединений, в промышленности уже давно разработан [20].. Грубая очистка предусматривает удаление неорганической серы, главным образом в виде сероводорода. Она происходит над так называемой люкс-массой (окись железа— красный шлам бокситиых отходов) или над бурым железняком при обычной температуре. Тонкая очистка, имеющая целью удаление органической серы в виде сероуглерода или сернистого карбонила, осуществляется над щелочной люкс-массой при температуре 250—300°. [c.28]

    Температура реакции метана с серой может быть значительно понижена применением соответствующих катализаторов. Так, в присутствии небольших количеств окпсп хрома, окиси марганца или пятиокиси ванадия сероуглерод получается с 90%-ным выходом уже при 700° [54]. [c.147]

    Четыреххлористый углерод (температура кипения 76,5°) широко применяют как растворитель для различных органических продуктов. Кроме To.ro, его в больших количествах употребляют для чистки текстильных товаров в прачечных и предприятиях химической чистки (азордин). Химически чистый четыреххлористый углерод (серетин) применяют для борьбы с глистами (щуром) у человека и овец. В качестве растворителя четыреххлористый углерод неуклонно вытесняется три-хлорэтиленом и перхлорэтиленом. Его применяют также как инертны.й растворитель при реакциях галоидирования, сульфохлорирования и т. д. До настоящего времени его получают также по старому непрямому способу взаимодействием хлора с сероуглеродом в присутствии иода или хлористой серы в качестве катализатора [167]. [c.210]

    Гидрирование и гидролиз сероорганическнх соединений сводятся к реакциям образования сероводорода и соединений, не содержащих серы. Способность индивидуальных соединений серы к реакции гидрирования увеличивается в следующем порядке тиофен, меркаптаны жирного ряда, сероуглерод, меркаптаны бензольного ряда, серооксид углерода. В промышленности наибольшее распространение получили кобальтмолибденовые и иикельмолибдеповые катализаторы. [c.201]

    Тем не менее имеется ряд патентов на методы сульфидирования катализаторов гидрообессер гваиия, отличающиеся условиями обработки и сульфидирующим агентом. Большая роль отводится сероуглероду [пат. США 3516926], предлагаются меркаптаны (С1—С20) [пат. США 4111796], диметилсульфид [пат.Англин 1553616], растворенные в нефтепродукте, сероводород и низкомолекулярные сульфиды в смеси с водородом [ пат. Японии 53-122692, США 3166491], сероводород, растворенный в нефтепродукте [пат. США 4213850] и пр. Разновидностью сульфидирования сероводородом в смеси с водородом является прием загрузки элементарной серы непосредственно в реактор, на слой катализатора и обработки ее ВСГ при постепенно повышаемой температуре до 200 °С [ 80, пат. США 4177136]. В связи с многообразием методов сульфидирования сформулировать требования по выбору условий обработки однозначно весьма трудно. Особенно разноречивые мнения по влиянию предварительного восстановления катализатора водородом на последующее сульфидирование. Однако в последних публикациях утверждается, что глубокое восстановление водородом, например, при высоких температурах (400 °С и выше) отрицательно влияет на образование комплексов, определяющих активность катализатора [39, 72, 81], но необходимость водорода при активации обязательна [80]. На основе исследований с учетом возможности реализации технологии активации катализатора ряд известных вариантов сульфидирования катализатора можно, в порядке предпочтительности, расположить следующим образом а) смесью сероводорода с водородом б) низкомолекулярным серусодержащим соединением в среде водорода в) низкомолекулярным серусодсржащим соединением в потоке легкого [c.99]

    Д п-альпое изучение бензоилированпя беизола проведено Оливером [244]. Исследовались следующие реакции хлористый бензоил и хлористый алюминий с бензолом в качестве растворителя бромистый бензоил и бромистый алюминий с бензолом в качестве растворителя реакция бромистого бензоила и бромистого алюминия с бензолом в сероуглероде в качестве растворителя. В тех случаях, когда ароматический углеподород присутствует в качестве растворителя, кинетика реакции следует первому порядку и константы скорости примерно пропорциональны концентрации катализатора, если последний взят без избытка [ВС0С1] >-[А1Хд]. При избытке катализатора константы скорости быстро возрастут. Последняя система показывает, что в этом случае реакция является реакцией первого порядка и по ароматическому углеводороду, и по хлориду, и катализатору. [c.454]

    Предварительное сульфидирование катализаторов гидроочистки является важным средством повышения активности катализаторов гидрообессеривания и гидродеазотирования [78,79,134-137]. Существуют различные способы сульфидирования. В частности, рекомендуется проводить сульфидирование катализаторов гидрогенизационных процессов сероводородом. При этом достигается наиболее высокая степень сульфидирования [142], но применение этого способа затруднено из-за высокой токсичности и коррозионной активности сероводорода и сложности его дозирования. Наиболее широко в промышленных условиях применяется сульфидирование катализатора серусодержащей нефтяной фракцией или индивидуальными сераорганическими соединениями [38,79]. Например, дистиллятная нефтяная фракция с высоким содержанием серы пропускается через катализатор в течение 1-2 суток в режиме гидроочистки (давление 3-15 МПа, температура 300-450 С). Однако при этом полного сульфидирования катализатора не достигается вследствие экранирования части активных центров отложениями кокса. Наиболее эффективным является метод сульфидирования специальными серусодержащими веществами [78], такими могут служить сероуглерод, диметилсульфид, н-бутил меркаптан, диметилдисульфид, ди-третнонилполисульфид. Однако применение сероуглерода и меркаптанов сдерживается нормами по охране окружающей среды. Поэтому наиболее успешно применяются диметилдисульфид и диметилсульфид, обладающие низкими температурами разложения (250 С) и дисульфидное масло, получаемое на установке демеркаптанизации ДМД-2. [c.15]

    Новый катализатор состоит из носителя, на которьм нанесен оксид активного металла. Он обеспечивает полную конверсию сероводорода в элементную серу при ничтожно малом образовании сернистого ангидрида даже в присутствии избыточного воздуха. Катализатор не чувствителен к высоким концентрациям воды в технологическом газе, не катализирует окисления окиси углерода, водорода, метана и образования карбонилсульфида и сероуглерода, обладает химической и термической стабильностью и достаточной механической прочностью. [c.179]

    Для проверки этого предположения были проведены опыты с добавкой сернистых соединений, меченных радиоактивной серой (табл. 72). В качестве модельной реакции выбрана та же реакция гидрогенизации бензола, а в качестве катализатора — аналог сернистого молибдена — промышленный катализатор 82. Гидрирование бензола проводилось в каждой серии опытов без смены катализатора, в необходимый момент в очередную порцию бензола на гидрогенизацию добавлялся меченый сероуглерод. По выходам циклогексана и метилциклопентана изучалась динамика изменения гидрирующей и изомеризующей активности ХУЗг как следствия изменения содержания в нем нестехиометрической серы. [c.269]

    СОг к СО находится в пределах 0,5—0,8. Для цеолитсодержащих катализаторов характерны более низкие значения. В газах регенерации наряду с окисью и двуокисью углерода обнаружены также двуокись и трехокись серы. Содержание трехокиси серы составляет от 10 до 40% от суммы окислов серы [159]. Кроме того, в газах регенерации обнаружены сероводород, меркаптаны, серо-окись углерода и сероуглерод, а также углеводороды (метан и зтан). Концентрации их меняются так, содержание сероокиси углерода колебалось от 9 до 190 млн. . Из общего содержания сернистых соединений не менее 70% составляют двух- и трехокись серы [158]. [c.122]

    После регенерации биметаллического катализатора и перед подачей на него сырья, как правило, необходимо сульфидировать катализатор. Это позволяет в начальный период цикла уменьпшть активность платиновых катализаторов в реакции гидрогенолиза парафинов, снизить отложение кокса и температурные скачки, а в итоге-увеличить длительность пробега катализатора [120]. Согласно данным работы [186], положительнре влияние серы на селективность и стабильность платиновых катализаторов обусловлено тем, что она способствует диспергированию платины. Сульфидированию подвергают катализатор во всех реакторах установки риформинга, а не только в последнем. Обычно сульфидирующим агентом служит диметилсульфид, этилмеркаптан или сероуглерод [182]. Свежий биметаллический катализатор сульфидируют всегда, регенерированный катализатор не сульфидируют в тех случаях, когда благодаря остаточной сере на катализаторе и определенном вла-госодержании сырья в пусковой период подавляются температурные скачки и деметанирование [181]. [c.102]

    Очистка от серосодержащих соединений. Природный газ содержит серу в виде сероводорода, сероуглерода S2, серооксида углерода OS, меркаптанов (главным образом этилмеркаптана jHsSH), содержание которых колеблется в пределах от 5 до 30 мг/м . Перед очисткой сероорганические соединения гидрируют до сероводорода на кобальтмолибденовом катализаторе при 350— 450°С, объемной скорости около 1000 ч по уравнениям реакций  [c.86]

    Катализаторы окисления сероводорода часто содержат диоксид титана, применяемый как в качестве активной фазы, так и в качестве носителя. Чистые титаноксидные катализаторы не отличаются высокой механической прочностью. Поэтому обычно в их состав вносятся специальные добавки, способствующие повышению прочности. Так для обессеривания кислого газа, содержащего сероводород, сероуглерод и серооксид углерода. [c.65]

    Результаты экспериментов представлены на рисунке в виде зависимости скорости образования ацетопропилового спирта от количества введенного яда у = /(с). Видно, что Сероуглерод, аммиак, ионы трехвалентного железа, КОН, ЫэаСОз дезактивируют палладиевый катализатор процесса гидрирования — гидратации сильвана в ацетопропиловый спирт. Токсичность этих соединений различна. Наиболее резкое снижение скорости образования ацетопропилового спирта происходит при добавлении в сырьевую смесь сероуглерода, ионов трехвалентного железа и аммиака. [c.127]

    Первый порядок по серусодер-жащему соединению и водороду найден для сероочнстк - на кобальт-молибденовом катализаторе я-гептана, с ержащего какое-либо из следующих соединений этилмеркаптан, тиофен или сероуглерод [22—24]. Энергии активации при этом равны 5 ккал1моль. [c.77]

    При гидрировании тиофенола, сероуглерода и тиофена в качестве катализатора применялся МоЗг [211 ]. С повышением температуры и давления водорода возрастает скорость гидрирования. По легкости гидрирования эти соединения располагаются в следующем порядке СвНаЗН > СЗз > С4Н43. [c.423]

    Природный газ, используемый в качестве сырья для конверсии, содержит механические примеси и масла, дезактивирующие поверхность катализатора, и сернистые соединения, отравляющие катализатор. К таким соединениям серы относятся сероводород, сульфидооксид углерода, сероуглерод, тиофен, органические сульфиды, меркаптаны и др. Для удаления соединений серы газ подвергают двухстадийной очистке. [c.220]

    Реакция фенолов с циклогексеном в присутствии катализаторов на основе фтористого бора изучалась рядом исследователей. По данным Леваса с сотрудниками [52, 57, 58], фенол с циклогексеном в присутствии ВРз без растворителя дает моно-, ди- и трицикл огексилфенолы с общим выходом, равным 67,6% от теоретического. В растворителе сероуглероде при температуре от 19 до 36° С получаются о- и ге-цшклогексилфенолы с общим выходом 57,6% от теоретического и относительным содержанием соответственно 23,6 и 76,4%, [c.175]

    Приведенные результаты экспериментов показывают, что как тиофен, так и сероуглерод отравляют катализатор никель на кизельгуре. Первые же порции сернистых соединений (до 0,1—0,27о тиофеновой серы и 0,2—0,5% сероугле-родной серы на катализатор) снижают гидрирующую активность катализатора на 10%. [c.122]


Смотреть страницы где упоминается термин Сероуглерод катализаторы: [c.76]    [c.17]    [c.99]    [c.338]    [c.48]    [c.97]    [c.168]    [c.256]    [c.122]   
Производство сероуглерода (1966) -- [ c.48 , c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Сероуглерод



© 2025 chem21.info Реклама на сайте