Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол электронное сродство

    В терминах теории МО нафталин имеет значительно более мягкую электронную оболочку, нежели производные бензола. Первый потенциал ионизации нафталина равен 8.15 эВ, а первое значение электронного сродства-0.19 эВ  [c.189]

    На рис. 1.7 сравниваются значения потенциалов ионизации и электронного сродства этилена, бутадиена и бензола. [c.89]

    Более высокие электронодонорные свойства пятичленных гетероароматических соединений обнаружены и экспериментально. На рис. 25.2 значения первых потенциалов ионизации и электронного сродства фурана, пиррола и тиофена сравниваются с данными для бензола. [c.439]


    Как видно, замена фрагмента -СН= в молекуле бензола на группу -К= заметно повышает и первый потенциал ионизации, и первое значение электронного сродства. Вследствие этого пиридин является весьма инерт- [c.450]

    При расчете коэффициентов jk и отвечающих им зарядов американские авторы в общем следуют расчетной схеме Хюккеля. Исключение относится к дополнительным соображениям, на которые мы обратим внимание ниже. Так как сродство к электрону различных атомов в замещенных ароматических соединениях и гетероциклах отличается от сродства к электрону бензольного углерода, значение интеграла Hkk принимается равным а — где б — постоянная, введенная для того, чтобы учесть эту разницу в электронном сродстве. При 6 О данный атом k обладает большим сродством к электрону, чем атом углерода в незамещенном бензоле, при бд, О — наоборот. [c.316]

    Данных о физических свойствах сульфохлоридов, помимо температуры плавления, имеется довольно мало. Величина диполь-ных моментов некоторых сульфохлоридов указывает на сильное сродство сульфохлоридной группы к электрону [55]. Дипольные моменты бензол-, п-толуол- и л-бромбензолсульфохлоридов соответственно равны 4,47, 5,01 и 3,23. Теплоты плавления некоторых сульфохлоридов приведены Тиммермансом [56]. Величина парахора п-толуолсульфохлорида согласуется с присутствием в молекуле двух полуполярных двойных связей [57а], [c.279]

    Молекула со сравнительно низкой энергией ионизации (донор В содержит в большинстве случаев л-электронную систему) проявляет известную тенденцию отдавать электрон молекуле с высоким сродством к электрону (акцептор А). Это приводит к некоторой разновидности межмолекулярной мезомерии между предельными структурами В, А (разделенные) ч 0 А", как, например, для стехиометрического комплекса иода с бензолом  [c.425]

    Энергия ионизации бензола равна 9,2 эв. Сродство молекулы иода к электрону до сих пор является неопределенной величиной. Малликен в работе [34] 1950 г. дает значение 1,8 эе, но в работе [36] 1960 г. упоминает уже цифру 2,5 эв. В работе [8] приведена величина 0,8 эв. Энергия электростатического притяжения положительного и отрицательного ионов на расстоянии 4,8 А равна —3,0 эв. Следовательно, [c.148]

    В чистую пробирку прилить 1—2 мл раствора KJ (или NaJ), сверху также прилить 1 мл бензина или бензола. Затем добавить хлорной воды и встряхнуть. Дать жидкостям расслоиться. Что получается Написать уравнение реакции вытеснения иода хлором (в молекулярной и ионной форме). Какой элемент—иод или хлор—проявляет большее сродство к валентным электронам  [c.188]


    Сродство к электрону возрастает в ряду бензол, нафталин, антрацен, тетрацен причем бензол не способен образовать в растворах устойчивый анион-радикал. Большинство анион-радикалов устойчивы в апротонных растворителях протонные среды вызывают их быстрые необратимые превращения. [c.425]

    Различные направления смещения электронов наблюдаются также при действии различных реагентов на бензол, его гомологи и производные. Например, при действии на о-диметилбензол озона (молекулы которого характеризуются большим сродством к электрону-67 ккал/моль [8]), происходит смещение т -электронного облака любой ароматической связи в сторону реагента, например  [c.253]

    Ароматические углеводороды имеют довольно низкие потенциалы ионизации и электронного возбуждения, которые уменьшаются с ростом цепи сопряжения. Так, / qj, и энергия нижнего возбужденного состояния уменьшаются при переходе от бензола к антрацену от 9,25 до 7,4 эб [11 и от 4,7 до 3,3 эб [1771 соответственно. Для ароматических углеводородов характерно положительное сродство к электрону [11. Энергия разрыва связи С—Н в ароматическом кольце равна — 100 ккал/моль [1.  [c.181]

    Первый потенциал ионизации бензола, равный 9,24 эВ, оценивает энергию ВЗМО субстрата как -9,24 эВ. Первое значение электронного сродства нитрозоний-иона, равное 9,27 эВ, оценивает энергию НСМО электрофила как -9,27 эВ. Энергетическая щель между граничными орбиталями реагентов в этой системе оказывается, таким образом, весьма малой и равной 0,03 эВ. Этот факт позволяет отнести данную реакционную систему к числу мягких и подчиняющихся орбитальному контролю. Так же близки энергии граничных орбиталей реагентов и в других реакциях электрофильного замещения с участием производных бензола, конденсированных аренов и гетероаренов. [c.445]

    Рост электронного сродства галогенарена по сравнению с бензолом соответствует снижению уровня энергии его НСМО и способствует реакциям с нуклеофильными реагентами. [c.641]

    Эта феноменологическая концепция в дальнейшем получила несколько более конкретное выражение [178]. В многокомпонентной смеси каждая возбужденная молекула взаимодействует с окружающими молекулами. Это взаимодействие влияет на вероятности дезактивации и химического превращения. При рассмотрении радиационно-химических свойств чистой жидкости или разбавленного раствора взаимодействие между возбужденной и невозбужденными молекулами часто может не учитываться в явной форме, так как возбужденная молекула всегда окружена молекулами одного и того же тина. Это взаимодействие в первом приближении можно рассматривать как образование бинарных комплексов между воз бужденной и невозбужденными молекулами. Согласно расчетам Хойтинка [207], взаимодействие между возбужденной и невозбужденной молекулами бензола приводит к связи прочностью в несколько десятых электроно-вольта. Возможно, что во многих случаях это взаимодействие имеет акцепторно-допорный характер. Чем меньше разность между ионизационным потенциалом донора и электронным сродством акцептора и чем выше уровень возбуждения донора, тем благоприятнее условия для образования акцепторно-донорного комплекса. Таким образом, для двух-компонентпой системы в общем случае возможны следующие процессы  [c.80]

    В этом разделе мы очень кратко познакомимся с различными улучшениями метода МОХ, а также с его распространением на другие системы (например, системы с ст-связями — расширенный метод МОХ , или усовершенствованная теория Хюккеля). Мы остановимся на учете интегралов перекрывания и вариации кулоновского и резонансного интегралов. Но до этого следует сказать несколько слов о принципиальных границах применимости метода Хюккеля, которые еще много раз будут нам встречаться. я-Электронное приближение нереалистично уже потому, что оно предполагает 0-остов непо-ляризуемым, а я-уровни лежащими выше, чем о-уровни. Однако расчет аЬ initio молекулы бензола методом МО ССП с учетом всех 42 электронов показывает, что даже в этой идеальной хюккелевской системе я-уровни могут лежать глубже, чем ст-уровни. Несмотря на то что допущения простого метода МОХ в большинстве случаев далеки от действительности, расчеты аЬ initio методом МО ССП для я-электронных систем требуют чрезвычайно больших трудоемких вычислений. Поэтому в настоящее время в квантовой химии я-систем господствует в основном упрощенное Паризером, Парром и Поплом приближение МО ССП. В этом методе, называемом методом ППП (иногда П -методом), для определения одно-и многоэлектронных интегралов используют параметры, эмпирически экстраполированные из потенциалов ионизации и электронного сродства (подробно метод ППП мы не рассматриваем). [c.236]

    Тушение, наблюдаемое в случае СНдГ, несомненно должно быть приписано атому I, обладающему большим электрическим сродством, чем радикал СНд. Весьма знаменательно сильное тушение, обнаруженное для бензола, ко торое приводит к выводу о большом электронном сродстве свободного радикала фенила С Нд, подтверждаемое независимыми химическими данными. [c.159]

    Записывая структуры подобного типа, принято опускать в них атомы Н, присоединенные к циклическим атомам углерода каждая вершина шестиугольного кольца обозначает атом С с присоединенным к нему атомом Н.) В первой из указанных выше реакций серная кислота помогает протеканию реакции, превращая НЫОз в N0 , частицу, которая атакует бензольное кольцо. Кроме того, серная кислота играет роль поглотителя влаги, удаляя из реакционной системы образующуюся в качестве продукта воду. Соединения РеВгз и А1С1з во второй и третьей реакциях являются катализаторами. Чтобы уяснить их роль, необходимо познакомиться с механизмом реакции. Ароматические циклы особенно восприимчивы к атаке элек-трофильными группами, или льюисовыми кислотами, которые имеют большое сродство к электронным парам. В реакции бромирования бензола Вг, не является электрофильным агентом, в отсутствие катализатора РеВгз эта реакция не осуществляется даже за достаточно большое время. Однако молекула РеВгз способна присоединить еще один ион Вг , акцептируя его электронную пару, и поэтому она разрывает молекулу Вг2 на ионы Вг и Вг +  [c.302]


    Ароматический секстет здесь образуется при переходе неподе-ленной пары электронов гетероатома на молекулярную орбиталь соединения. Однако такой переход энергетически менее выгоден, чем в предыдущих случаях, и дает меньшую стабилизацию соединения, так как при этом должен образоваться частичный положительный заряд на гетероатоме и я-электронная избыточность соединения. Поэтому степень ароматичности рассматриваемых соединений зависит от природы гетероатома чем меньше его сродство к электрону, тем она выше. Во всех случаях, однако, в пятичленных гетероциклах имеется сильное нарушени-е выравненностн связей, причем порядок связей 2—3 и-4—5 значительно больше, чем в бензоле. Являясь электроноизбыточными, эти соединения значительно легче бензола вступают в реакции с электрофильными реагентами. [c.25]

    Флуоресценция MgXл(a) возрастает по мере добавления экстралиганда, если используется абсолютно сухой бензол. Из табл. 5.3 следует, что в бензоле хлорофилл(а) координируется даже с молекулами, имеющими я1с-связанную электронную пару (первые два лиганда). Молекулы со свободной парой электронов образуют весьма устойчивые комплексы, независимо от того, координируется атом кислорода или азота. Обращает на себя внимание очень высокое сродство к воде (Ку = 3 10 ) и стабилизация экстракомплекса длинными алкилами (С7, С ), что важно для процессов комплексообразования, протекающих в биосистемах. [c.268]

    В этих ароматических я-системах в отличие от сопряженных диенов и полиенов с открытой углеродной цепью создаются условия выравнивания я-электронных плотностей и порядков связей по всему циклу. Поэтому ароматические я-системы бензола, аннулена и другие относятся к молекулам с равномерным сопряжением. Наоборот, в бутадиене-1,3 и ему подобных молекулах сопряжение по связям углеродной цепи является неравномерным. Равномерность сопряжения в ароматических молекулах придает особую устойчивость их я-системам, в результате чего они теряют способность к реакциям присоединения по я-связям и по свойствам приближаются к циклоалканам С5, Сб и т, п. Таким образом, соматическое состояние сопряженных я-систем характеризуется потерей химического сродства я-электронами. Критерии (признаки) возникновения ароматических я-систем будут подробно обсуждены ниже. [c.316]

    КУПМАНСА ТЕОРЕМ А орбитальная энергия занятой молекулярной орбитали, взятая с обратным знаком, равна потенциалу ионизации молекулы с этой орбитали при сохранении ядерной конфигурации молекулы. Утверждает, что молекула и ее ион описываются единым набором мол. орбиталей (МО). Однако значения потенциалов ионизации, рассчитанные на основе К. т., как правило, завышены по сравнению с эксперим. данными. Поправки обычно основаны на учете эффектов электронной корреляции, изменении МО иона по сравнению с МО молекулы и м. б. рассчитаны на основе возмущений теории или рассмотрения МО гипотетич. системы, промежуточной между молекулой и ионом (т. н. метод переходного оператора). В простых вариантах метода МО теорема позволяет определять сродство к электрону по значению орбитальной энергии наинизшей из виртуальных МО. Теорема сформулирована Т. Купмансом в 1933. КУПФЕРОН (аммониевая соль К-нитрозо-М-фенилгидро-ксиламина), Гш, 163—164 С (с разл.) раств. в воде, бензоле, эф., СП. При хранении разлаг., особенно быстро на свету. Реагент для разделения экстракцией и осаждением для гравиметрич. и фотометрич. определения Си(П), Ре(П1), В1(П1), металлов П1я и 1Уа подгрупп перио-элементов, с к-рыми образует внутри-ком и.чсксные соединения. [c.293]

    Все вышесказанное подтверждает, что адсорбция из растворов — это сложный процесс, за.висяпдий как от взаимодействия молекул растворенного вещества и растворителя между собой в объемной и поверхностной фазах, так и от их взаимодействия с адсорбентом. Специфическую роль каждого нз этих факторов трудно охарактеризовать глубже, чем это было сделано при обсуждении правила Траубе. Вообще говоря, если между адсорбентом и адсорбатом образуются водородные связи, адсорбционная постоянная К достигает больших значений. Киплинг [17] приводит примеры относительно высокого сродства силикагеля к нитро- и нитрозопроизводным дифениламина и. -этиламииа [18] и значительно более сильной адсорбции фенола на активном угле по сравнению с его ди-орго-ироизводными грег-бутилового спирта [19]. Следует отметить, что поверхность многих активных углей частично окислена. Так, сферой 6 содержит на поверхности атомы кислорода [20], на которых спирт адсорбируется предпочтительнее, чем бензол. Однако после обработки при 2700 °С, приводящей к образованию гра-фона, адсорбируется преимущественно бензол [21]. Ароматические соединения проявляют тенденцию к преимущественной адсорбции на алифатических группах, например на поверхности углерода, что, по-видимому, обусловлено л-электронным взаимодействием, или, другими словами, высокой поляризуемостью ароматических групп. В случае массивных ароматических молекул эта тенденция ослабляется, возможно, вследствие увеличения расстояния между ароматической группой и поверхностью адсорбента [19]. Такие высокомолекулярные вещества, как сахар, красители и полимеры, больше склонны к адсорбции, чем их более легкие аналоги. Порядок элюирования из хроматографических колонок обычно является обратным по отношению к величинам К, характеризующим адсорбционную активность вещества. Таким образом, даже основываясь на качественных хроматографических данных, имеющихся в литературе, можно сравнивать адсорбционные свойства различных веществ. Данной теме посвящено множество обзоров, например обзор Негера [22]. [c.315]

    Бензол обладает подвижными тг-электронами, а молекула иода имеет большое сродство к электрону, благодаря чему между обеими частицами возникает слабое ковалентное взаимодействие донорно-акцепторного вида и осуществляется частичный перенос электрона (смещения) от донора (СвНв) к акцептору электронов (/2)  [c.115]

    SO2) ТОЧНО не определено [29]. Единственные полосы поглощения в УФ-области, наблюдавшиеся до сих пор в спектрах комплексов замещенных бензолов с SO2, расположены близко от положения максимума поглощения акцептора и могут быть следствием усиления ультрафиолетового поглощения самого акцептора . Недавно Пэрсон [32] вычислил величины вертикального сродства к электрону иода, брома, хлора и хлористого иода, исходя из потенциальных кривых для ионов Х2". Эти результаты довольно хорошо согласуются с данными, полученными на основании частот переноса заряда в комплексах галогенов. [c.36]

    Как отмечалось в главе II, наблюдение полос поглощения, характерных для молекулы галогена в ИК-спектре растворов комплексов бензола с галогенами, первоначально рассматривалось как доказательство против модели R [И]. Так как было найдено, что в ИК-спектре бензольных комплексов брома и иода становятся активными только колебания бензола с основной частотой 992 и 850 см Фергюсон [12, 13] первоначально сделал вывод, что при взаимодействии с галогенами группа симметрии углеводорода понижается с D h до ev Последняя группа симметрии соответствует аксиальной модели комплекса А. Как было отмечено в главе II, Фергюсон и Матсен [14] считают, что повышение интенсивности валентных колебаний молекулы галогена, сопровождающее образование комплекса галоген — бензол, можно приписать изменению в процессе колебания величины сродства к электрону акцептора, связанного в комплекс. Этот вывод применим к модели R так же, как к моделям А и О. [c.63]

    Это ион пазывается бензолониевым ионом [1576]. Структура имеет симметрию о, а координата реакции сохраняет симметрию группы в процессе образования. Этот ион можно представить себе как тетраэдрический атом углерода, связанный с резонансно стабилизированной системой из пяти атомов углерода с четырьмя п-электронами. Можно было бы ожидать, Что бензолониевый ион должен образовываться с трудом из-за потери энергии резонанса бензола. В действительности сродство бензола к протону очень велико, 183 ккал/моль, что несколько выше, чем сродство этилена к протону [160]. [c.382]


Смотреть страницы где упоминается термин Бензол электронное сродство: [c.49]    [c.49]    [c.153]    [c.51]    [c.121]    [c.723]    [c.730]    [c.370]    [c.373]    [c.90]    [c.551]    [c.18]    [c.185]    [c.157]    [c.311]    [c.31]    [c.47]    [c.236]    [c.377]   
Органическая химия Том1 (2004) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол электронное

Сродство

Сродство к электрону



© 2025 chem21.info Реклама на сайте