Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен винильными мономерами

    Можно применить схему Q — е только к величинам, но даже в этом случае смысл полученных значений Que является менее определенным, чем для винильных мономеров. Можно ожидать, что влияние заместителя Y аналогично его влиянию в винильном мономере СНа=СН . Однако влияние заместителя X, связанного с атомом углерода, на который направлена атака и растущего радикала, определенно не будет аналогично его влиянию в соответствуюш,ем винильном мономере СН2=СНХ, в котором атом X связан с концевым атомом углерода. Увеличение числа заместителей при атоме углерода 3 в обш,ем приводит к уменьшению реакционной способности мономера по отношению к свободным радикалам. Более того, реакционные способности цис- и транс-томе ов различны транс-изомеры обычно более реакционноспособны. Вопрос о том, можно ли все эти факты объяснить на основе схемы Q — е, пока остается открытым. Здесь следует отметить две различные проблемы. Можно ли на основании значений Que для мономеров Mj удовлетворительно определить значение для различных пар, содержащих в качестве Мг 1,2-дизамещенный этилен Если да, то можно ли определить значения Que для каждого мономера этого типа, зная его молекулярную структуру Имеющиеся данные о сополимеризации свидетельствуют о том, что ни на один из этих вопросов нельзя ответить с уверенностью. [c.75]


    Однако вследствие большой прочности связи С—Н в этилене в первом случае гораздо более вероятно присоединение радикала к этилену по двойной связи, т.е. реакция роста цепи соседство активного центра практически не влияет на прочность связи вторичного водорода (49, с. 27], так что эта реакция также маловероятна. Вьшолненная в работе [37, с. 418] оценка значений См из данных по содержанию в полиэтилене винильных двойных связей, даже в предположении, что все они образуются при передаче цепи на мономер по реакциям (4.28) и (4.29), дает для нее малое значение См = 3 10" —7 10 . Кроме того, несоответствие экспериментальных данных об объеме и энергии активации передачи цепи на мономер аналогичным величинам, известным для других мономеров, также свидетельствует о практическом отсутствии передачи цепи на мономер при полимеризации этилена [50]. [c.64]

    Полимеризация этилена при высоком давлении (от 1000 до 3000 кгс/см ) подчиняется обычным закономерностям реакции полимеризации винильных соединений, протекающей по свободнорадикальному механизму. Особенность полимеризации этилена, инициированной свободными радикалами, заключается в том, что полиэтилен с высоким молекулярным весом получается лишь при высоких концентрациях мономера. При малых концентрациях этилен присоединяется к свободным радикалам, но с реакцией их роста конкурируют реакции дезактивации свободных радикалов, и образующийся полимер имеет невысокий молекулярный вес [И, с. 7 12, 13]. С повышением давления этилена, сопровождающимся увеличением его плотности, средний молекулярный вес продукта полимеризации (ири постоянных температуре и концентрации инициатора) возрастает. [c.5]

    Радикальная полимеризация всегда протекает по цепному механизму. Функции активных промежуточных продуктов при радикальной полимеризации выполняют свободные радикалы. К числу распространенных мономеров, вступающих в радикальную полимеризацию, относятся винильные-мономеры этилен, винил-хлорид, винилацетат, винилиденхлорид, тетрафторэтилен, акрило-нитрил, метакрилонитрил метилакрилат, метилметакрилат, стирол и диеновые мономеры (бутадиен, изопрен, хлоропрен и др.). [c.40]

    Как правило, мономеры представляют собой вполне устойчивые вещества самопроизвольная П.— редкое исключение. Поэтому способность данного мономера к П., наряду с термодинамич. факторами (условие убыли свободной энергии — см. Термодинамика полимеризации), определяется также и кинетическими, т. е. наличием подходящего катализатора, выбором условий и т. д. Эти две группы факторов далеко не всегда взаимосвязаны. Напр., этилен из числа винильных соединений имеет наибольшую теплоту П. и, следовательно, находится в наиболее благоприятных термодинамич. условиях (изменение энтропии при П. большинства винильных мономеров почти одинаково), однако до открытия Циглера — Натта катализаторов он считался весьма инертным мономером, малоактивным в радикальной и неактивным в ионной П. В то же время изобутилен, теплота П. к-рого вдвое меньше, полимеризуется с почти взрывной скоростью даже при —180 °С. [c.441]


    Поскольку по методу Q, е величины е и а рассматриваются как члены, характеризующие степень поляризации молекулы, логично предположить, что между ними существует определенная зависимость. Графически зависимость величины е от а для винильного мономера СН2=СНХ приведена на рис. 27. Так как значение е для взятого мономера меняется в зависимости от сочетания мономеров, в данном случае приводится его средняя величина. Значение о дано для пара-замещенных для дву-замещенных этиленов типа СНд СХУ берется алгебраическая сумма о. Для стирольных производных коэффициент передачи бензольного ядра принимается равным 0,303. Несмотря на целый ряд отклонений, в общем [c.86]

    Эта реакция является обратной по отношению к реакции (1) и практически при облучении такой системы устанавливается равновесие. Особый случай окислительно-восстановительного процесса представляет галоидирование. Присоединение иода идет с низким выходом, в присутствии же хлора происходит хлорирование с выходами в десятки тысяч молекул на 100 эв поглощенной энергии, что свидетельствует о цепном механизме процесса. Излучение может инициировать протекание многих других процессов цепного характера, включая полимеризацию винильных мономеров и ненасыщенных углеводородов, подобных этилену и изобутилену. [c.14]

    Оба мономера (этилен и пропилен), используемые для синтеза полиэтилена и полипропилена, получаются при пиролизе и крекинге нефти. Выход этилена й пропилена при пиролизе нефти составляет соответственно 8—10 и 4—5% (от массы сырой нефти), а при крекинге 1,5—3%. В отличие от этилена, являющегося исходным сырьем при синтезе разнообразных продуктов (этанола, уксусной кислоты и др.) и различных винильных мономеров (винилхлорида, винилиденхлорида, винилацетата), пропилен не находит пока столь широкого, квалифицированного применения. [c.271]

    Известны и работы других авторов, в которых установлена взаимосвязь между 1/2 и реакционной способностью веществ к полимеризации. Например, Фуэно с сотр. [289] показали с помощью квантовохимических расчетов, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и -метилстиролы, изопрен, этилен и др.) изменение 1/2 происходит параллельно их анионной полимеризуемости . [c.192]

    Описано получение сополимеров окисей алкиленов с различными винильными мономерами 235-237 g числе с акрилонитрилом 238, 239 а также блоксополимеров окисей алкиленов со стиролом 2- о и этиленом 2 Я и привитых сополимеров полиэтиленок-сидов с эфирами акриловой кислоты 2 2, сложными виниловыми [c.158]

    Реакции гомополимеризации а-олефинов и винильных мономеров протекают с образованием полимеров, на 97— 100% построенных по принципу голова—хвост , вследствие термодинамической выгодности соответствующих актов роста. Однако в процессе сополимеризации, например, этилена с пропиленом [335] или а-амиленом [424], по-видимому, возникают условия, благоприятные для нарушения регулярности цепи и сочленения звеньев по принципу голова к голове . В этом случае обычные константы относительной активности мономеров оказываются зависимыми от состава мономерной смеси [425]. Количество аномальных присоединений в сополимерах, полученных на системе VAAg—Al (изо-С4Нд)2С1, составляет около 20% по отношению к этилену в сополимере эквимоляр-ного состава. Присоединения такого типа обнаружены и в сополимерах, полученных на других ванадийсодержащих каталитических системах. Анол1альные присоединения, наличие разветвленности и конверсионная полимеризация увеличивают композиционную неоднородность сополимеров, что положительным образом сказывается на их эластомерных свойствах. [c.81]

    Кроме приведенных выше наших результатов, в работе [40], установлена взаимосвязь между и реакционной способностью к полимеризации. В этой работе с помощью квантово-механических расчетов показано, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и р-метилстиролы, изопрен, этилен и др.) изменение 1/2 происходит параллельно их анионной полимеризуемости . Хотя в настоящее время имеется очень мало данных для установления такой корреляции в случае других групп мономеров (полимеризующихся по радикальному механизму), такая взаимосвязь между константами скорости полимеризации и уг вполне реально. В пользу этого говорит то обстоятельство, что эмпирическое уравнение Хаммета — Тафта в настоящее время находит широкое применение для характеристики влияния заместителей как на константы скорости многих радикальных реакций (в том числе реакций полимеризации и сополимеризации [707, 708]), так и на полярографические потенциалы полуволн. Значение такой взаимосвязи трудно переоценить. Так как определение значений потенциалов полуволн неизмеримо проще, чем определение кинетических характеристик мономеров, то о реакционной способности мономера удобней судить по полярографическим показателям. [c.179]

    Нам известна еще одна работа [45], в которой была установлена взаимосвязь между полярографическими константами и реакционной способностью к полимеризации. Так, Т. Фуэно и др. с помощью квантово-механических расчетов показали, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и р-метилстиролы, изопрен, этилен и др.) изменение Ег/ происходит параллельно их анионной полимеризуемости . Таким образом, полярографический метод [c.210]


    Большинство перечисленных катализаторов инициируют также полимеризацинЗ пропилена, бутилена, бутадиена, изопрена, стирола, метилметакрилата и их сополимеризацию с этиленом. Активность катализаторов обычно возрастает при увеличении продолжительности их размалывания в отсутствие растворителя [833, 844]. В процессе дробления Т1С1г диспропорционирует на Т1С1з и Т [334]. Для получения более активных катализаторов исходные соединения активируют облучением [849, 850], в процессе дробления обрабатывают этиленом, водородом, хлором, хлористым водородом, галогеналкилами [833, 844, 849, 855]. Совершенные кристаллы перечисленных катализаторов несоизмеримо менее активны, чем микроагрегаты и молекулярные дисперсии. Реакции полимеризации в процессе дробления, вероятно, не являются специфическими, так как полимеризация протекает при дроблении не только переходных металлов или их соединений — окислов, галогенидов нитридов [842], но и таких веществ, как сажа, уголь, графит, бор, кремний [845]. Возможно, что винильные мономеры в процессе дробления указанных веществ полимеризуются по радикальному механизму. ..  [c.225]

    Виниловые полимеры получают полимеризацией этилена или замещенных этиленов. Их название происходит от винильной группы СНг = СН—, которая входит в состав многих мономеров. В табл. 39.1 приведены некоторые примеры из огромного множества известных виниловых полимеров. [c.354]

    В свободнорадикальную полимеризацию вступают олефиновые соединения типа СНг = СНА, где А — электроотрицательный атом или группа, такая, как —СООСНз, — N, —С1 или — gHs. Из простых олефинов только этилен способен к такой полимеризации при очень высоком давлении. Присутствие электроноакцепторных групп обычно облегчает проведение полимеризации. Из мономеров такого типа важное значение приобрели сложные эфиры акриловой и метакриловой кислот. При полимеризации метилметакрилата образуется полимер с длинной цепью за счет соединения углеродных атомов винильных групп друг с другом  [c.521]

    Параметр определяется степенью сопряжения в ненасыщенном мономере и его стерич. особенностями. Действительно, значение мало, если сопряжение вовсе отсутствует (этилен) или цепь сопряжения разорвана (винилметиловый эфир, винилацетат), а также в случае сверхсопряжения (пропилен, изобутилен). И, наоборот, этот параметр велик для таких молекул, у к-рых винильная группа сопряжена с др. алкенильной группой (бутадиен, изопрен, 2 3-диметилбутадиен), со сложноэфирной (метилметакрилат), нитрильной (акрилонитрил) или с фенильной (стирол) группами. Он особенно велик, если в молекуле мономера две таких группы, несмотря на возникающие при этощ стерич. затруднения полимеризации (а-цианостирол, а-цианометилакри-лат, винилиденцианид). [c.146]

    Реакционная способность. Сополимеризацию стирола с галоиди-ровапными этиленами проводили главным образом для изучения влияния характера замещения на реакционную способность мономеров. Ниже приведены данные об относительной реакционной способности мономеров, у которых винильная группа присоединена к галогену (М — стирол)  [c.303]

    Другой пример- полимеризация винильных соединений, катализируемая радикалами. В переходном состоянии для стадии роста цепи радикал присоединяется к двойной связи мономера. Если рассматривать мономер как замещенный этилен, то переходным состоянием будет дизамещенпая нечетная альтернант-ная система, изосопряженная аллилу  [c.529]

    Литературные сведения о радиолизе мономеров весьма скудны. Более других исследованы этилен и ацетилен [1]. При радиолизе этилена образуются водород, метан, ацетилен, этан, пропан, пропилен, бутан, цис- и гронс-бутилены, изобутилен, пен-тан, гексан. Среди газообразных продуктов радиолиза этилена наибольший выход у водорода и ацетилена О соответственно 1,14 и 1,52 при 75 мм рт. ст.). При радиационной полимеризации ацетилена в купрен масс-спектрометрическим методом исследованы промежуточные ионы и для их образования пре.дложены ионно-молекулярные реакции [2]. Английские исследователи обстоятельно изучили радиолиз гексадецена-1, который при действии уизлучения приводит к полимерам, содержащим винильные и транс-шшлто- [c.106]

    Эти гомогенные каталитические системы, так же как и рассмотренные выше гетерогенные, представляют собой комбинацию из соединения переходного металла (IV—VIII групп) и металлорганического соединения (I—III группы). В большинстве случаев такие системы способны инициировать полимеризацию мономеров винильного ряда. Механизм полимеризации при этом часто относят к координационно-анионному на том лишь основании, что по химической природе исходных компонентов эти системы аналогичны гетерогенным системам Циглера—Натта. Между тем в настоящее время достаточно хорошо известно, что рассматриваемые системы в зависимости от условий проведения процесса, а также и природы мономера могут инициировать не только координационно-анионную, но и радикальную полимеризацию (см. далее, гл. VI). Нелишне напомнить, что этилен может быть заполимеризован но радикальному механизму в мягких условиях, т. е. при низких температурах и под малым давлением. Так, например, Бир и Мессварб с сотр. [ ] получили полиэтилен высокого молекулярного веса в водных растворах солей серебра при 10—40° под давлением порядка 1—15 атм., используя в качестве инициаторов перкарбонаты или персульфаты. Полученный полиэтилен обладает высоким молекулярным весом и по свойствам сходен с полимерами, полученными над гетерогенными катализаторами Циглера—Натта. [c.152]

    Такие винильные соединения, как акрилонитрил, акриловая и метакриловая кислоты, этилен и его галоидзамещенные (винил-хлорид, винилиденхлорид, винилбромид, тетрафторэтилен, три-фторхлорэтилен и другие), полимеризуются со всеми особенностями, характерными для гетерофазной полимеризации. Появлением новой фазы сопровождается о)-полимеризация и соиолимеризация некоторых мономеров (папример, стирола и малеинового ангидрида, метилметакрилата и метакриловой кислоты при определепных соотношениях сомономеров), а также полимеризация обычных мономеров (стирола, метилметакрилата, винилацетата и других) в средах, не растворяющих полимеры. [c.97]


Смотреть страницы где упоминается термин Этилен винильными мономерами: [c.344]    [c.443]    [c.580]    [c.76]    [c.490]    [c.179]    [c.490]    [c.146]    [c.147]    [c.147]    [c.179]    [c.179]    [c.78]    [c.78]   
Прогресс полимерной химии (1965) -- [ c.183 ]

Прогресс полимерной химии (1965) -- [ c.183 ]




ПОИСК







© 2025 chem21.info Реклама на сайте