Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инфракрасная спектрометрия аппаратура

    АППАРАТУРА ДЛЯ ИНФРАКРАСНОЙ СПЕКТРОМЕТРИИ [c.727]

    Существует большое число других более или менее специальных способов, использование которых определяется характером проблемы и доступностью аппаратуры. Так, молекулярные веса даже очень мало летучих веществ часто оказывается возможным определить с помощью масс-спектро-метрии, однако, поскольку масс-спектрометры еще не стали таким же стандартным лабораторным оборудованием, как инфракрасные спектрометры,, их использование для этой цели началось только в последнее время. Во многих случаях, однако, масс-спектрометрия оказывается наиболее удобным методом, в частности потому, что хорошее разрешение обычно достигается вплоть до масс, равных 600. Молекулярные веса соединений с очень большим молекулярным весом, таких, как белки и полимеры, обычно определяют путем анализа на концевые группы, измерения осмотического, давления, вязкости, рассеяния света и скорости седиментации. Некоторые из этих методов будут рассмотрены более подробно в последующих главах. [c.28]


    Аппаратура для снятия таких спектров обычно очень сходна по своей конструкции с инфракрасным спектрометром (рис. 2-1). Основное отличие заключается в использовании водородной (1800—4000 А) или вольфрамовой (3200—8000 А) лампы в качестве источника света используются также кварцевые призмы и кюветы для образцов и фотоэлементы (а не термопары) для детектирования излучения. В этих спектрометрах призма помещается перед образцом. [c.46]

    Еще в 1944 г. исследователи могли пользоваться лишь инфракрасными спектрометрами, специально конструируемыми на заказ для данного исследовательского учреждения или в нем самом и поэтому непомерно дорогими [5, с. 49]. Буквально за два-три года положение резко изменилось в результате того, что было налажено промышленное производство аппаратуры для ИК-спектроскопии, Еще не так давно инфракрасная спектроскопия была уделом небольшой группы энтузиастов, которые проводили утомительные ночи с капризными приборами в полуподвалах нескольких университетских лабораторий. В настоящее же время исследование инфракрасных спектров, когда необходимо быстро получить результаты, может быть проведено относительно просто в любое время и почти в любом месте [63, с. 108]. [c.240]

    Существует большое число других более или менее специальных способов, использование которых определяется характером проблемы и доступностью аппаратуры. Так, молекулярные массы даже очень мало летучих веществ-часто оказывается возможным определить с помощью масс-спектрометрии, однако, поскольку масс-спектрометры еще не стали таким же стандартным лабораторным оборудованием, как инфракрасные спектрометры, их использование для этой цели началось только в последнее время. Во многих случаях, однако, масс-спектрометрия оказывается наиболее удобным методом, в частности потому, что хорошее [c.33]

    Непрерывный анализ газов с помощью инфракрасной спектрометрии является хорошо разработанным и широко используемым методом контроля. Для этой цели выпускается серийная аппаратура в большинстве случаев с неподвижной оптикой, что обеспечивает ее максимальную надежность и простоту в работе. Основным применением такой аппаратуры является определение одного интересующего компонента в анализируемой смеси газов. [c.201]

    Ответы на все эти вопросы можно получить с помощью метода инфракрасной спектроскопии. Необходимая для этой цели серий-. ная автоматизированная аппаратура широко распространена в научно-исследовательских и заводских лабораториях. Однако правильная постановка эксперимента и объяснение получаемых результатов даже при использовании автоматического спектрометра не являются тривиальными и требуют некоторой специальной подготовки. [c.3]


    Книга содержит описание основных современных физико-химических методов, применяемых для анализа органических соединений, — спектроскопии в инфракрасной, видимой и ультрафиолетовой частях спектра, рентгенографии, хроматографии, масс-спектрометрии, полярографии, ЯМР-и ЭПР-спектроскопии и др. Изложены теоретические основы методов, описаны современная аппаратура и возможности применения методов для исследования структуры и состава полимеров. Приведено большое число методик анализа различных природных и синтетических высокомолекулярных веществ — пластиков, эластомеров, смол, белков, целлюлозы, волокон и т. д., а также ряда низкомолекулярных соединений, применяемых при получении и переработке полимеров. [c.4]

    Далекая инфракрасная область. Интервал от 50 до 500 мкм называется далекой ИК-областью, в которой имеют место низкочастотные колебания и вращения. Однако типы колебаний и вращений, которые обусловливают пики поглощения в данной области, обычно не находят -большого аналитического применения. Большинство таких вращений наблюдается при микроволновых частотах, поэтому использование этой области спектра часто не оправдано из-за дорогостоящей аппаратуры. Появление в последнее время относительно новых видов приборов, называемых фурье-спектрометрами, облегчает проведение определения в далекой ИК-области, и можно ожидать, что эти приборы будут стимулировать использование этой области для аналитических целей. [c.727]

    Как уже отмечалось выше, большинство молекул при комнатной температуре находится в основном колебательном состоянии, так что поглощение ИК-излучения является обычно более чувствительным и важным, чем испускание. К тому же, за исключением нескольких особых случаев, инфракрасная флуоресценция не является эффективным процессом. Поэтому не удивительно, что аппаратура для измерений ИК-области основана на регистрации поглощения излучения и аналогична применяемой в ультрафиолетовой и видимой спектрофотометрии. Однако, поскольку характеристики пропускания ИК-излучения для большинства материалов отличаются от характеристик пропускания ультрафиолетового и видимого излучений, ряд блоков приборов, используемых в этих двух областях спектрометрии, отличаются. На рис. 21-3 показана блок-схема типичного ИК-спектрофотометра. Сравним ее с принципиальной схемой спектрохимического прибора, изображенной на с. 617, и со схемой абсорбционного спектрофотометра на рис. 18-11. Явным отличием от абсорбционных приборов является расположение химической пробы. В ИК-спектрометрии химическую пробу помещают перед (а не после) монохроматором. Такое расположение [c.727]

    Многочисленными исследованиями советских и зарубежных ученых открыты новые, ранее неизвестные физические явления, сконструирована аппаратура, разработаны основы интерпретации. Физические методы стали широко применяться при изучении природных органических соединений, в том числе нефтей. Эти методы многочисленны и разнообразны, но наиболее эффективны среди них УФ-спектрометрия, ядерный магнитный резонанс (ЯМР), масс-спектрометрия, электронный парамагнитный резонанс (ЭПР). Инфракрасная спектроскопия, так же как и масс-спектрометрия, относится к числу апробированных методов, тогда как ЯМР и ЭПР являются в нефтяной геохимии новыми, находящимися в стадии развития. [c.346]

    Аналитический контроль качества выпускаемых продуктов требует надежных методов анализа. Методы инфракрасной спектроскопии и масс-спектрометрии не получили широкого применения ввиду большой их трудоемкости и сложности аппаратуры. Ректификационный метод аналитического контроля качества продукта не дает раздельного определения близкокипящих компонентов, что приводит к неточностям качественного и количественного определения его состава. [c.283]

    Необходимым инструментом в лабораториях химиков-органиков масс-спектрометрия стала лишь тогда, когда она была оценена не только как метод анализа углеводородных смесей, но и как мощное средство структурного анализа. Одновременно должны были произойти и такие изменения в аппаратуре, которые позволили бы применять этот метод к достаточно большим молекулам, для которых обычные химические способы анализа были мало пригодны. Правда, коммерческое оборудование для масс-спектрометрии стало поступать уже в начале 40-х годов. И несмотря на несовершенство этой техники, как мы видели, Гувер и Уошберн смогли показать преимущества ее в органическом анализе перед существовавшими методами. Но даже после того, как в начале 50-х годов появилась аппаратура, позволявшая, например, производить рутинное получение спектров углеводородов значительно больших, чем (тогда как до этого с трудом можно было получать масс-спектры соединений, плотность паров которых была меньше, чем у додекана), все же по сравнению с другими инструментальными методами структурного анализа масс-спектрометрия была в начале 60-х годов еще в ранней стадии развития и еще не достигла уровня, который имела, например, инфракрасная спектроскопия в начале 50-х годов (если основываться при этом на числе публикации) [98, с. 94— 95]. Однако в первой половине 60-х годов положение резко изменилось. [c.255]


    Анализируемые смеси часто содержат соединения с различными функциональными группами и изомеры. Кроме того, некоторые из компонентов таких смесей не отличаются по удерживаемым объемам даже на колонках с различным наполнителем. Это затруднение мол<но было бы устранить под-боро м соответственных жидких фаз для разделения и идентификации компонентов. Однако необходимость испытания большого числа жидких фаз делает указанный лгетод длительны М и трудоемким. Поэтому в некоторых случаях пользовались отбором элюатов, соответствующих пикам и идентификацией их с помощью инфракрасной спектрофото-метрии" или масс-спектрометрии . Поскольку требуемая при этом дополнительная аппаратура очень дорога и во многих лабораториях отсутствует, а отбор элюатов затруднен и не всегда осуществим, приходится ограничиваться только данными газовой хроматографии. [c.264]

    В работах, выполненных в лаборатории физики прочности ФТИ им. А. Ф. Иоффе АН СССР в Ленинграде, для исследования процесса разрушения полимеров на молекулярном уровне применялись электронный парамагнитный резонанс для изучения свободных радикалов, оптическая (инфракрасная) спектроскопия для изучения химически стабильных высокомолекулярных продуктов разрушения и масс-спектрометрия для изучения низкомолекулярных летучих продуктов. Эти методы используют характерные свойства изучаемых молекулярных объектов. Кроме принципиальных возможностей, при выборе той или иной методики принималась во внимание чувствительность аппаратуры. [c.169]

    Из рис. 27 видно, что полоса поглощения физически адсорбированной СОг весьма интенсивна, даже если заполнение поверхности меньше, чем 0,01. Этот факт иллюстрирует высокую чувствительность инфракрасных спектров в некоторых случаях. В случае с физически адсорбированной СОг имеются особенно благоприятные условия, поскольку СОг характеризуется высоким коэффициентом погашения. На том же самом образце и при применении той же оптики (призма из СаРг, модель 12 спектрометра Перкина—Эльмера) удавалось обнаружить полосу СОг на кабосиле при заполнении поверхности 0,0001. Если использовать пористое стекло и аппаратуру, которая в настоящее время доступна, вероятно, удастся обнаружить малые заполнения поверхности вплоть до 0 = 1 10 . [c.59]

    Возможность управления важнейшими функциями научно-исследовательской аппаратуры с помощью ЭВМ (аналоговый сигнал или активация реле) позволяет улучшить работу этих приборов. Например, ЭВМ, измеряющая поглощение излучения с помощью инфракрасного или ультрафиолетового спектрометра, может также поддерживать в этих приборах постоянный уровень энергии излучения, меняя ширину щелей. Другим примером является газожидкостной хроматограф здесь ЭВМ осуществляет пуск и останов прибора, а также управляет скоростью изменения температуры. [c.53]

    Общие принципы и аппаратура инфракрасной спектрометрии описаны в разд. 9.2. В настоящем разделе рассмотрим лишь требования к аппаратуре, необходимые для комбина1Ц1И с газовой хроматографией. [c.609]

    Исходя из этих соображений, нам представлялось весьма интересным при изучении процесса каталитического гидрирования диметилтерефталата определить и основные стереохимические закономерности этой реакции. Гидрирование осуществлялось с применением катализатора никель на кизельгуре при повышенных температуре и давлении в аппаратуре и по методике, описанным ранее [16]. Определение содержания стереоизомеров гексагидродиметилтерефталата в гидрогенизате осуществлялось с помощью ИК-спектров (инфракрасный спектрометр Хильгер Н-800) [17]. [c.88]

    Анализ уравнения (4), предполагающий совместное рассмотрение как систематических, так и случайных помех, в бо.льшинстве случаев основывается на схеме аддитивных помех, что имеет место, в частности, в современных инфракрасных спектрометрах, где случайные ошибки определяются флуктуационными процессами в приемниках радиации. В этом случае функция (i) имеет смысл шума приемника, представленного отрезком стационарного случайного процесса с нулевым средним значением и спектром мощности Git). В то же время прогресс в области создания все более чувствительных методов измерения наталкивается на тот факт [15, 18, 27—29], что принципиальные ограничения на пути совершенствования спектральной аппаратуры, в конечном итоге, связаны с флуктуационными процессами в источнике, искажающими непосредственно регистрируемый спектр, с чем, например, экспериментатор имеет дело при фотоэлектрической регистрации излучения в коротковолновой области спектра. Шумы, обусловленные низкочастотными колебаниями интенсивности, в ряде случаев могут оказаться доминирующими и в длинноволновой области спектра [30]. Истинное распределение при этом следует рассматривать как среднестатистическое, а текущее значение ошибки — как разницу между усредненным и текущим значениями сигнала, снимаемого с приемника [31, 32]. [c.131]

    Дийенйй й развитием йа этой основе инструментальных методов анализа [ПО, 124]. Первой работе по аналитическому использованию инфракрасной спектрометрии предшествовало изучение спектров 55 индивидуальных углеводородов, полученных и ат-тестованйых при выполнении проекта № 6 Американского института нефти (АИН) [146]. Масс-спектральный анализ тяжелых фракций нефти стал возможен лишь после получения органических веществ с большой молекулярной массой и высокой сте пенью чистоты по проекту № 42 АИН [ПО]. При этом следует отметить, что исследование теории и разработка аппаратуры для криометрического метода анализа проводились в рамках проекта № 6 АИН параллельно с разработкой методов получения высокочистых углеводородов [29]. В 1955 г. метод утвержден как стандартный метод определения чистоты органических соединений и используется до настоящего времени, несмотря на неоднократный пересмотр стандартов [60]. В 1957 г. созвана Первая международная конференция, посвященная обсуждению возможностей криометрического метода [147]. [c.7]

    Для непрерывного аналитического контроля производства пользуются инфракрасной спектрометрией, однако этот анализ связан с необходимостью применения дорогостоящей аппаратуры [2381а]. [c.481]

    Инфракрасные спектры поглощения и спектры комбинационного рассеяния света в пределах, определяемых правилами отбора, дают по существу одни и те же сведения о молекуле, а именно -колебательный спектр молекулы, находящейся в нормальном электронном состоянии (правила отбора определяют появление частоты соответствующего колебания только в том или ином спектре или в обоих сразу). Если задача эксперимента заключается в характеристике чистого вещества или смеси, содержащей большие количества всех компонентов, то могут использоваться обе методики и выбор одной из них определяется удобством и доступностью оборудования. Аппаратура для получения спектров комбинационного рассеяния света стоит значительно дешевле и проще в эксплуатации, чем инфракрасные спектрометры когда проводится исследование случайного образца (и если иметь в виду, что работы ведутся не часто, а требования к чувствительности анализа невысоки), то для исследования веществ, допускающих Освещение их видимым светом, следует предпочесть спектроскопию комбинационного рассеяния света. В тех же случаях, когда требуется высокая чувствительность анализа или предполагаются широкие масштабы аналитических работ с многочисленными и разнообразными веществами, необходимо отдать предпочтение большим преимуществам инфракрасной методики. Однако воз -можно, что с усовершенствованием автоматической фотоэлектрической регистрации спектроскопия комбинационного рассеяния света окажется, как метод анализа смесей, на одном уровне с инфракрасной и ультрафиолетовой спектроскопией. Описание аналитических методик спектроскопии комбинационного рассеяния света см. в работе Штамма [175а] и других [158а]. > [c.174]

    Съемка спектра адсорбированных молекул производится в специальных вакуумных кюветах. Конструкция кюветы должна предусматривать возможность термической обработки образца в вакууме, поэтому применяемые типы кювет различаются в основном конструкцией нагревательной части кюветы. Поскольку съемка спектра производится при помещении образцов адсорбента в часть кюветы, к которой (приклеиваются окошки из прозрачных в инфракрасной области спектра кристаллических материалов — КВг, ЫаС1 или СаРг, разогревать эту часть кюветы до высоких температур нельзя. Поэтому съемка спектров и нагревание образца производится обычно в разных частях кюветы, Кроме того, в зависимости от расположения адсорбционной аппаратуры и спектрометра кюветы разделяются на переносные, в которых имеется возможность откачки образца на вакуумной установке и переноске кюветы для съемки в спектрометр, и на стационарные, которые постоянно закреплены перед щелью спектрометра. Последний тип кювет используется обычно при исследовании поверхностных реакций и адсорбции в тех случаях, когда надо проводить измерения концентрации или отно- [c.70]

    В предыдущих главах уже было показано, что точная современная научная аппаратура обязательно нужна для контроля за окружающей средой и для применения химии в экономике. Методы исследования поверхности имеют рещаю-щее значение для достижения новых успехов в катализе, на котором основано столько химических производств. Хроматография вместе с масс-спектрометрией и лазерной спектроскопией превратилась в повседневное средство аналитического контроля. Инфракрасная спектроскопия — это типичный спектральный метод, нашедщий эффективное применение в контроле за окружающей средой, а также в научных исследованиях. [c.236]

    Для наблюдения за ходом реакции обмена на практике наиболее часто используется масс-спектрометрический метод [433—435], хотя в этих же целях могут быть использованы и другие методы, такие, например, как инфракрасная спектроскопия [436 . Наиболее удобна для такого анализа установка, в которой масс-снектрометр прямо соединен с реакционным сосудом [428]. При этом удается легко проследить за увеличением содержания дейтерия в углеводороде или за увеличением содержания водорода в дейтерии или, наконец, за обоими этими изменениями. Эти наблюдения можно выполнить на любой стадии обмена, но особенно интересно провести их на начальной стадии реакции. Следует отметить две важные особенности этого метода, даже если не рассматривать подробно конструкцию аппаратуры Во-первых, М05КН0 добиться того, что количества реагирующих веществ и продуктов реакции, вводимых в масс-спектрометр, будут исключительно малы. Во-вторых, желательно работать при больших величинах отношения числа молекул дейтерия к числу молекул вещества, в котором происходит обмен. Это необходимо для того, чтобы свести к минимуму влияние изотопного разбавления дейтерия на скорость образования более высокозамещен-ных веществ. (Трудно точно определить распределение первичных продуктов реакции, если скорость их образования быстро уменьшается.) [c.137]

    Идентифицировать элементы можно как в чистом виде, так и в смесях, и в соединениях. Методы идентификации, прн которых исследуется результат взаимодействия вещества с другими веществами, называются химическими. Методы, при которых идентификация вещества осуществляется без проведения реакций между ним и другими веществами, а также без превращения его в другие вещества, называются физическими. Соединения, свойства которых установлены предшествующими измерениями, обычно удается быстрее идентифицировать физическими методами, включающими определение плотности, показателя преломления, температур кипения и плавления, спектров поглощения или испускания (инфракрасных, видимых, ультрафиолетовых, рентгеновских), теплоемкости, вязкости, твердости, электропроводности и теплопроводности. Наиболее распространенная совокупность свойств, достаточная для идентификации,— температуры кипения и плавления, а также плотность. В большинстве случаев их можно определить с помощью простого оборудования и подробных таблиц, составленных для рблегче-ния идентификации. Особенно удобно использовать для идентификации уже изученных соединений их показатели преломления. Еще быстрее осуществляется идентификация спектроскопическими методами, однако они требуют применения дорогой аппаратуры. Современные спектрометры позволяют менее чем за час работы установить все элементы, имеющиеся в исследуемом образце вещества, и определить их процентное содержание. [c.163]

    Бурке и Джонс [26] изучили спектры комбинационного рассеяния света для жидкого нентафторида брома при комнатной температуре при длине волны линии ртути 4358 А и инфракрасные спектры газообразного BrFg в области от 400 до 700 см при помощи спектрометра с оптикой из КВг. ИК-спектры изучали при низком давлении, так как BrF5 быстро воздействует на оптику прибора. Рамановская трубка была изготовлена из фторотена. Использовавшийся в исследовании пентафторид брома получали по методу Руффа и Менцеля [1] дистилляцию его проводили в стальной аппаратуре. В спектре комбинационного рассеяния жидкого пентафторида брома найдено девять частот (684, 629, 569, 539, 480, 410, 365, 310 и 241 см ), а в инфракрасном — четыре полосы поглощения при 690, 645, 583 и 418 см . Недостаточное количество данных по инфракрасным спектрам при низких основных частотах и поляризация линий комбинационного рассеяния не дали возможности сделать определенные выводы о структуре молекул пентафторида брома. Однако из двух вероятных моделей, тетрагональной пирамиды и тригональной бипирамиды, авторы отдали предпочтение первой, поскольку симметрия С предполагает девять частот в спектре комбинационного рассеяния, а симметрия Dsh — лишь шесть частот. [c.221]

    Еще не так давно инфракрасная спектроскопия была уделом небольшой группы энтузиастов, которые проводили утомительные ночи с капризными приборами в полуподвалах нескольких университетских лабораторий. В настоящее же время исследование инфракрасных спектров, когда необходимо быстро получить результаты, может быть проведено относительно просто в любое время и почти в любом месте. Такое совершенствование методики явилось отчасти результатом общего признания того, что это направление в спектроскопии может явиться мощнАм аналитическим орудием для решения традиционных химических проблем, как-то определение строения, идентификация и количественный анализ и действительно, некоторые важные проблемы такого рода могут решаться этим методом лучше, чем любым другим из имеющихся в настоящее время. Бурный рост применения инфракрасной методики явился результатом усовершенствования аппаратуры, особенно в части регистрации инфракрасного излучения и автоматической записи спектра, включая в большинстве случаев использование ламповых и фотоэлектрооптических усилителей. В настоящее время инфракрасная спектроскопия находится в состоянии энергичного развития, которое не предвещает быстрого достижения равновесия. Это не значит, что потребители современного инфракрасного оборудования должны опасаться того, что их приборы быстро устареют конструкция спектрографов, по существу, достаточно стабильна, а усовершенствования в приеме и записи могут быть введены в любой спектрометр хорошей конструкции. [c.108]

    Штарк-эффект). Число подуровней зависит от симметрии поля и может быть определено с помощью методов теории групп [5]. Поскольку по отношению к полям, возникающим в 4 /-оболочке, электрические поля большинства кристаллов являются слабыми , то напряженность электрических полей не изменяет квантового числа /, а определяет лишь величину расщепления и не влияет на число штарковских компонент подуровней. Число подуровней ионов для разных значений / и различных симметрий поля известно и сведено в таблицы [6]. Экспериментально наблюдаемые спектры поглощения и люминесценции ионов ТК + в кристаллах представляют собой совокупность полос, расположенных в ближней ультрафиолетовой, видимой и инфракрасной частях спектра (рис. 1). Спектральное положение этих полос соответствует переходам между уровнями с разным J в свободных ионах ТК +, что является следствием хорошей экранировки 4 /-оболочки от внешних влияний заполненной оболочкой 5 5 5 р . Если снимать спектры поглощения и люминесценции при низкой температуре, например при температуре жидкого азота (77 К) или ниже, и использовать при этом спектральную аппаратуру высокой разрешающей способности (спектрометры, монохроматоры или спектрографы с дифракционными решетками типа ДФС-12, МДР-2, ДФС-13 и др.), то оказывается возможным наблюдать структуру полос поглощения и люминесценции, связанную с кристаллическим расщеплением уровней полосы оказываются сложенными из узких, шириной несколько ангстрем, линий. На рис. 2 приведена структура групп поглощения (переход между уровнями / /-И люминесценции (переход / 3- / /,) кристалла ЬаГз-К + (точечная группа В ) при 4,2 К 17], и схема уровней и переходы между ними, проявляющиеся в приведенных [c.282]


Библиография для Инфракрасная спектрометрия аппаратура: [c.82]   
Смотреть страницы где упоминается термин Инфракрасная спектрометрия аппаратура: [c.285]    [c.39]    [c.62]    [c.39]    [c.298]    [c.287]    [c.68]    [c.208]    [c.18]    [c.115]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.727 , c.729 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрометр инфракрасный



© 2025 chem21.info Реклама на сайте