Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колонка диффузия продольная

    Таким образом, сложные процессы в колонке мы характеризовали тремя коэффициентами диффузии—продольной (0 ), вихревой (Ьв) и эквивалентной задержке массообмена (Г> ). Коэффициент общей эффективной диффузии равен  [c.582]

    Таким образом, сложные процессы в колонке характеризуются тремя коэффициентами диффузии (продольной), (вихревой) и (эквивалентной задержке массообмена). [c.33]


    Малые по величине члены, описывающие продольную (вдоль оси колонки) диффузию в неподвижной фазе, а также сопротивление массопередаче на поверхности раздела фаз, в этом уравнении отброшены. [c.19]

    Размывание зоны. Хроматографические максимумы, как правило, оказываются шире, чем можно было бы ожидать, исходя лишь из вероятностной природы миграции, которая обусловлена тремя процессами вихревой диффузией, продольной диффузией и массопередачей. Степень влияния этих процессов определяется контролируемыми переменными, такими, как скорость потока, размер частиц наполнителя колонки и толщина стационарного слоя. [c.263]

    Равновесные процессы в хроматографических колонках с продольной диффузией конечная форма фронтов. [c.23]

    Проведен математич. анализ зависимости ВТТ от величины и конфигурации спиральной колонки. Показано, что пренебрежение градиентом скорости в колонке, разностью в длине внешнего и внутреннего диаметров спирали, а также коэфф. поперечной диффузии приводит к неправильному выражению для ВТТ. Приводятся исправленное выражение для выходной конц-ции, а также кол-венные соотношения между параметрами колонки и продольной и поперечной диффузией. [c.32]

    В выражение для общего коэффициента эффективной диффузии Дэ, кап. в капиллярной колонке нужно ввести член О для продольной диффузии [и этом случае, как отмечено выше, 7= , см. выражение (79)], член Од для динами ческой диффузии и, как и для колонки с насадкой, член ) для диффузии, эквивалентной задержке массообмена газа с неподвижной фазой  [c.588]

    Размывание, вызываемое малой скоростью массообмена и другими причинами диффузионного порядка, целесообразно рассмотреть как некоторую эффективную продольную диффузию, т. е. связать константы кинетики процесса массообмена с эффективным коэффициентом диффузии Оэфф, описывающим совокупность диффузионных процессов в хроматографической колонке. [c.24]

    При движении газа через колонку с адсорбентом происходит изменение скорости потока по сечению. Это приводит к размыванию полосы за счет вихревой диффузии. Неравномерность локальных продольных скоростей обусловлена неоднородностью набивки колонки, что приводит к разным сопротивлениям потоку по сечению. Там, где сопротивление больше, поток движется медленнее, там, где оно меньше, поток движется быстрее. [c.96]

    Размывание границ зоны может быть объяснено, если принять во внимание факторы, которые не были учтены при выводе уравнения (I, 13) скорость установления адсорбционного равновесия, продольная диффузия вещества вдоль колонки, гидродинамические характеристики течения [c.30]


    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Вследствие того что путь между зернами адсорбента в колонке является извилистым, коэффициент продольной диффузии отличается от коэффициента свободной молекулярной диффузии О, что можно учесть, если ввести коэффициент извилистости [c.31]

    Если вести процесс так, чтобы скорость обмена была достаточно высокой, т. е. переходная зона находилась бы как можно ближе к равновесному состоянию, то работа ионообменной колонки однозначно может определяться ионообменным равновесием. Достижению последнего способствуют малые размеры зерен ионита, низкая скорость протекания раствора, повышенная температура. В общем случае при полном описании работы ионообменной колонки нужно учитывать кинетику ионообменного процесса и продольную диффузию (диффузия в направлении оси колонки). Разработка теории процессов в проточных колонках— достаточно сложная задача, и в настоящее время имеются только приближенные методы расчета работы ионита в динамических условиях. [c.685]

    При осуществлении первого способа необходимо учитывать (на основании проведенных исследований ), что с увеличением диаметра препаративных колонок (выше 10—15 мм) уменьшается их разделительная способность. Это объясняется увеличением неравномерности течения газа по сечению насадки колонки и возникновением в связи с этим диффузии газа в продольном направлении. Полезная радиальная диффузия в результате уменьшается. [c.61]

    Для повышения эффективности препаративных колонок диаметром 60- 75 мм их снабжают перемычками (перераспредели-телями), установленными по длине колонок примерно на расстоянии 1 м друг от друга. Перераспределители представляют собой полые трубки меньшего сечения. Они служат для у.мень-шения диффузии газов в продольном направлении. Для умень- [c.61]

    При небольших значениях скорости газа-носителя разделительная способность колонки определяется в основном вторым членом уравнения. В этом случае величина ВЭТТ может иметь очень большие значения из-за продольной молекулярной диффузии, а число теоретических тарелок для колонки заданной длины соответственно становится небольшим. [c.99]

    Уравнение (111.37) устанавливает связь между линейной скоростью а потока газа-носителя и эффективным коэффициентом продольной диффузии Оэфф, характеризующим сложный процесс размывания полос в реальной хроматографической колонке. Если ввести соответствующие обозначения в (111.37), то получим уравнение, вывыденное Ван-Деемтером  [c.55]


    Итак, в нашем распоряжении имеется хроматографическая колонка, заполненная гранулами сорбента и находящейся между ними жидкостью (пока неподвижной), которую будем именовать элюентом. Конструкции колонок подробно описаны ниже, а пока нам достаточно представлять себе хроматографическую колонку в виде относительно тонкой и длинной трубки. Внесем мысленно в такую колонку с одного ее конца определенный объем раствора некоего вещества в том же элюенте, т. е. создадим исходную хроматографическую зону. Представим себе далее, что прошло достаточно времени для установления динамического равновесия внутри зоны. При этом будем пока пренебрегать диффузией в направлении продольного размера колонки, размывающей зону. Если размеры гранул сорбента действительно малы, то равновесие за счет поперечной диффузии в любом сечении зоны будет достигнуто очень быстро, поэтому такое пренебрежение пе внесет существенной ошибки в рассуждения. [c.16]

    На практике нередко возникает такая ситуация, когда уже готовая колонка с аффинным сорбентом оказывается загруженной лишь на малую долю своей эффективной емкости. Весь препарат в этом случае сорбируется в верхнем тонком слое сорбента. Для динамического хроматографического фракционирования это хорошо, но в обычном варианте статической аффинной хроматографии такая ситуация невыгодна уже тем, что в процессе элюции, продвигаясь по всей длине колонки, полоса очищенного вещества будет расширяться хотя бы за счет продольной диффузии в элюенте. Проблема легко разрешается — перед началом элюции снабженную адаптором колонку следует перевернуть и элюировать обратным током жидкости. [c.403]

    Второй центральный момент — дисперсия — зависит от всех факторов, характеризующих работу колонки. Как видно из уравнения (IV.76), она растет с ростом длины колонки, коэффициента продольной диффузии В, констант равновесия Гвнеш, Гпор и размеров зерна. Размытие уменьшается с увеличением В и коэффициентов массопередачи Рвнеш и Рдор- Хорошо известно в теории хроматографии выражение для числа теоретических тарелок [35]  [c.172]

    Небольшую стеклянную колонку заполняют катионообменивающей смолой. Смолу переводят в форму элемента, изотерму которого снимают. Затем через колонку пропускают раствор, содержащий вытесняющий катион с достаточно малой скоростью, позволяющей пренебречь размыванием фронта вытесняемого катиона из-за неравновесных процессов (внутренней и внешней диффузии, продольного перемешивания в колонке и т. п.). С нижнего конца колонки отбирают пробы, в которых определяют концентрацию вытесняемого катиона с. Одновременно с отбором проб измеряют изменение высоты слоя смолы в колонке из-за изменения набухаемости смолы в процессе десорбции. Отдельно определяют х — пористость смолы. [c.54]

    Продольная диффузия в газе. Молекулы интересующего нас компонента газовой фазы, увлекаемые потоком газа вдоль колонки, вместе с тем двигаются хаотически во всех направлениях. Их движение и направлении, перпепдику-.чярном оси колонки, не приводит к размыванию полосы, но их хаотическое движение вдоль потока (вперед и назад) способствует размыванию полосы. [c.581]

    Прежде всего следует учесть продольную диффузию, эффективный коэффициент, который отличается от коэффициента молекулярной диффузии на некоторый коэффициент извилистости уизв, учитывающий извилистость пути газа между зернами в хроматографической колонке с насадкой. Тогда [c.24]

    Теория осадочной хроматографии развита К. М. Ольщановой [24], а также В. В. Рачинским и А. А. Лурье [25]. При рассмотрении поведения осадков в колонке или в тонком слое принимают, что равновесие между раствором и осадителем, находящимся в твердой фазе, устанавливается практически мгновенно, кроме того, пренебрегают наличием продольной диффузии. Эти допущения вполне обоснованны, так как практически на процесс разделения смеси веществ методом осадочной хроматографии эти явления не оказывают существенного влияния. [c.161]

    Влияние давления на размывание в капиллярной хроматографии несколько отлично от его действия в насадочных колонках, что связано с большей ролью внешнедиффузионной массопередачи в первом случае. Поэтому увеличение давления в капиллярной хроматографии, по крайней мере для сильно сорбирующихся веществ, приводит к возрастанию величины Н, а для слабо сорбирующихся Н не зависит от давления. При малых скоростях потока в обоих случаях вследствие определяющего влияния продольной диффузии Н уменьшается с ростом давления. [c.139]

    В изложенном выше теоретическом подходе предполагалось, что равновесие устанавливается мгновенно. Однако в реальном хроматографическом процессе оно устанавливается за определенное время и поэтому хроматографическая полоса (пик) при движении вдоль колонки размывается. Это происходит вследствие ряда динамических и кинетических причин. Во-первых, сказывается продольная диффузия (вдоль и навстречу потоку подвижной фазы) молекул адсорбирующегося вещества, перенос и диффузия вокруг зерен адсорбента, а также диффузия в поры адсорбента (внутренняя диффузия). Кроме того, молекулы компонен- [c.24]

    Представим себе, что в описанную выше колонку с того же конца, где находится исходная хроматографическая зона, начинают подавать элюирующую жидкость. Разумеется, второй конец колонки при этом открыт так, что жидкость между гранулами по всей ее длине приходит в движение. Как поведет себя зона Будем пока по-прежнеиу пренебрегать продольной диффузией. На переднем по течению жидкости крае зоны подвижная фаза, покидая область равновесия, начнет поступать в прилежащий участок колонки, где неподвижная фаза еще свободна от вещества. Молекулы последнего начнут диффундировать внутрь гранул неподвижной фазы, и будет устанавливаться новое равновесие между подвижной и неподвижной фазами на этом участке. Распределение между фазами, как п ранее, будет определяться соотношением степеней сродства вещества к каждой из фаз, т. е. коэффициентом распределения К. Зона начнет расширяться, однако концентрация вещества в присоединяющемся спереди участке будет ниже, чем в исходной зоне, так как в этот участок поступает только то количество вещества, которое раньше содержалось в подвижной фазе такого же (по длине колонки) участка. В это же время из точно такого же по длине колонки участка, находящегося в конце зоны, подвижная фаза уходит вперед, а на ее место поступает чистый элюент. И здесь происходит равновесное перераспределение, на этот раз за счет вещества, прежде находившегося в неподвижной фазе, которое теперь частично десорбируется. Общая концентрация вещества в этом арьергардном участке зоны, очевидно, тоже начинает уменьшаться. В остальных участках, на которые можно мысленно разбить исходную зону, уходящая вперед подвижная фаза замещается точно таким же раствором подвижной фазы, поступающим из расположенных сзади участков, и равновесие не нарушается. [c.19]

    Каждая отдельная дисперсия вносит свой вклад в суммарную дисперсию, т. е. в расширение хроматографической зоны. Приведенные выражения позволяют понять характер влияния выбора параметров хроматографического процесса на ширину зоны, т. е. содержат в себе очень важную практическую информацию. Наг рпмер, легко видеть, что с увеличением диаметра гранул зона расширяется как за счет неоднородности тока жидкости, так и особенно за счет неравновесности распределения молекул вещества по объемам подвижной и неподвижной фаз. Эта неравновесность будет сказываться тем меньше, чем больше значения коэффициентов диффузии и Оа, т. е. чем легче диффундирует вещество. С другой стороны, облегчение диффузии (увеличение и О ) влечет за собой раси]и-рение зоны за счет продольной диффузии (особенно в подвижной фазе). Скорость элюции и) также влияет двояким образом. С ее увеличением вклад продольной диффузии в расширение зоны умень-шается, зато сильнее сказываются все неравновесности распределения. Наконец, все факторы без исключения увеличивают дисперсию зоны пропорционально длине колонки L. Отсюда следует, что движение хроматографической зоны вдоль колонки в неидеальных условиях связано с непрерывным расширением зоны. Это должно нас насторожить в отношении целесообразности увеличения длины колонки. [c.29]

    Чем меньше величина Я, тем лучше работает колонка. В современных колонках добиваются того, что Я = (1 -н 2) т. е. величине Я отвечает размер порядка малых долей миллиметра. Отсюда появилось наглядное представление о тонком диске, как бы вырезанном из колонки. Его образно назвали теоретической тарелкой , а величину Я именуют высотой теоретической тарелки . Исторически этот термин появился при рассмотрении людели хроматографического процесса, где непрерывную элюцию заменяли малыми скачкообразными продвижениями зоны, подобно тому как это было сделано выше в методе диаграмм. Кстати, с помощью этого метода понятию теоретической тарелки можно придать наглядный смысл. Как было установлено при сопоставлении диаграмм рис. 5, с уменьшением ширины гипотетического скачка, описывающего продвижение зоны вдоль колонки, меняется и форма зоны, в частности степень ее расширения. Представим себе, что при хроматографировании определенного вещества в реальных условиях мы экспериментальным путем нашли закон расширения зоны, а затем подобрали ширину теоретического скачка так, чтобы расширение, описываемое методом диаграмм, следовало бы точно такому же закону. Ширина этого скачка и отвечает понятию высоты теоретической тарелки Я. В методе диаграмм мы не принимали во внимание продольной диффузии, однако можно себе представить, что существует более сложная модель скачкообразного движения зоны, учитывающая все факторы, ведущие к размыванию зоны. Ширина эквивалентного скачка в этой модели может служить наглядной иллюстрацией понятия о величине Я. [c.32]

    Кстати, отсюда следует, что хуже всех разделяются самые крупные молекулы, которые едва входят внутрь гранул (K v = 0,1 -i- 0,2). Выгоднее, таким образом, выбрать норпстость матрицы (но графикам селективности) так, чтобы разделение наиболее важных компонентов смеси происходило при значениях Kav в диапазоне 0,6—0,8. Конечно, в этом случае интересующие экспериментатора компоненты смеси будут двигаться вдоль колонки медленнее что будет способствовать расширению их пиков за счет продольной диффузии, но в отличпе от других хроматографических методов такое замедление скажется не очень сильно, ибо полный объем элюции, как уже отмечалось, невелик. Неоднородность размеров гранул также особо неблагоприятно сказывается в методе гель-фильтрации, поскольку явления диффузии здесь играют главную роль. [c.113]

    Для обессоливанпя и рассортировки молекул скорость элюции может быть выбрана довольно большой — порядка 20 мл/см- ч (следует предварительно проверить сжимаемость геля ). Как было показано в гл. 1, с позиций достижения наилучшего разрешения пиков существует оптидгальная скорость хро.матографического фракционирования. Слишком медленная элюция приводит к резкому уширению пиков за счет продольной диффузии, слишком быстрая — к более ностененному их уширению за счет нарушения равновесия поперечной диффузии. Оптимальная скорость зависит от размеров молекул и гранул, увеличиваясь с уменьшением тех и других. Для ориентировки можно указать, что оптимальная скорость элюции для белков составляет примерно 2 мл/см -ч (для определения объемной скорости элюции это значение надо умножить на илощадь сечения колонки). Однако нередко имеет смысл в интересах оптимизации условий эксперимента в целом значительно отступить от оптимальной скорости элюции в сторону ее увеличения. [c.136]

    Начнем с вопроса о длине колонки. В гл. 1 было показано, что в случае изократической элюции разрешение пиков улучшается с увеличением длины колонки. Для градиентной элюции это не совсем так. Хроматографические зоны продвигаются по колонке намного медленнее, чем течет элюент. В случае градиентной элюции в какой-то момент времени ушедшую вперед зону может догнать концентрация соли, отвечающая практически полной десорбции мигрирующего в ней вещества. С этого момента такая зона будет двигаться вместе с элюентом. Когда это произойдете последней, исходно наиболее прочно сорбированной зоной, все зоны, еще остающиеся в колонке, будут продвигаться с одинаковой скоростью, не расходясь, а даже сближаясь друг с другом за счет продольной диффузии веществ. Поэтому градиентную элюцию чаще всего ведут па срав- [c.293]


Смотреть страницы где упоминается термин Колонка диффузия продольная: [c.150]    [c.581]    [c.23]    [c.590]    [c.625]    [c.117]    [c.204]    [c.240]    [c.30]    [c.44]    [c.223]    [c.332]    [c.309]    [c.21]    [c.121]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.537 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия продольная



© 2024 chem21.info Реклама на сайте