Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительное сернистым газом

    Сероводород НзЗ является типичным восстановителем. В своих кислородных соединениях элементы этой подгруппы проявляют степень окисления +4 и +6, что соответствует оксидам КОз и КОз. Сернистый газ проявляет как окислительные, так и восстановительные свойства. Эти же свойства характерны и для сернистой кислоты. В производстве серной кислоты оксид серы (VI) 80 3 получают контактным методом, поэтому этот метод называется контактным. Серная кислота двухосновна и образует два типа солей — сульфаты и гидросульфаты. Концентрированная серная кислота при нагревании взаимодействует со многими металлами, расположенными в электрохимическом ряду напряжений металлов после водорода. Разбавленная серная кислота взаимодействует с металлами, стоящими в этом ряду перед водородом. [c.214]


    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    Окислительные реакции широко распространены в природе (в земной коре). Это связано с тем, что прн подъеме магматических расплавов и отделяющихся от них газов, флюидных фаз и подземных вод все подвижные фазы проходят из зоны восстановительных процессов на большой глубине к зонам окислительных реакций вблизи поверхности. Иллюстрацией такого рода процессов является образование золя серы при взаимодействии сероводорода, растворенного в гидротермальных водах, с окислителями (сернистым газом или кислородом)  [c.135]

    Сероводород НзЗ является типичным восстановителем. В своих кислородных соединениях элементы этой подгруппы проявляют степень окисления + 4 и -н 6, что соответствует оксидам КОг и КОз. Сернистый газ ЗОг проявляет как окислительные, так и восстановительные свойства. Эти же свойства характерны и для сернистой кислоты НгЗОз. Оксид серы (VI) 80з получают контактным методом в производстве серной кислоты, поэтому этот метод называется контактным. [c.193]

    Печь окислительная Клауса для регенерации серы. Отходящий газ после сорбции содержит довольно много сульфидов. Это дает возможность использовать его для получения серы или сернистого газа. Состав отходящих газов следующий (в объемн.%)  [c.239]


    Для регенерации серы в чистом виде из отходящих газов заводы оборудуются установками для окисления отходящих газов. В этих установках образуются сульфиды и сернистый газ. Окисление сульфидов проводится в печах окислительных Клауса в присутствии катализатора боксита. [c.239]

    Настоящая книга посвящена рассмотрению современного состояния и перспективам разработки и внедрения отечественных процессов очистки сернистых газов. Значительное место отведено методам окислительной конверсии сероводорода с учетом того, что разработка процессов гомогенного и гетерогенного каталитического окисления сероводорода и тиолов может оказать в ближайшие годы заметное влияние на технологию переработки сернистых нефтей, газовых конденсатов, сернистых природных и попутных нефтяных газов и связанные с этим проблемы экологии. [c.6]

    Лабораторными исследованиями и промышленными испытаниями реакторов доказана целесообразность применения взвешенного слоя для гидрирования окиси углерода с целью синтеза метанола [15, 161, высших спиртов [17], синтина [181 и в синтезе аммиака (т. е. для гидрирования азота на железном катализаторе) [19, 201. Кипящий слой оказался более технологичным и экономичным, чем фильтрующий слой катализатора во многих окислительных процессах, в частности при окислении этилена до окиси [21, 221, нафталина до фталевого ангидрида [23, 241, сернистого газа в серный ангидрид [1,2, 25—271, при окислительном аммонолизе пропилена в производстве акрилонитрила [28, 291. [c.91]

    Проявляя слабые окислительные свойства, теллуровая кислота при взаимодействии с сильными восстановителями (гидразином, сернистым газом и т. п.) восстанавливается до 172 [c.172]

    Одной из характерных особенностей окислительных процессов является широкое разнообразие их технологических характеристик. Они различны с точки зрения термодинамических характеристик. Например, окисление сернистого газа и хлористого водорода осуществляют в условиях, близких к термодинамическому равновесию, когда скорость обратной реакции значительна, а окисление аммиака и метанола, получение акрилонитрила окислительным аммонолизом практически необратимы. [c.137]

    Степень освоения кипящего слоя в окислительных процессах различна. Реакторы с кипящим слоем катализатора применяют в нромышленности для окисления этилена и нафталина, получения акрилонитрила и других продуктов. Успешно начата эксплуатация контактных аппаратов кипящего слоя для окисления сернистого газа. Стадию заводских испытаний и лабораторных исследований проходят ряд других процессов. [c.138]

    В окислительных процессах очистки сернистых газов с получением серы используют различные группы катализаторов активный оксид алюминия, природный боксит, алюмосиликат с добавками меди, оксид алюминия с добавками оксида хрома и [c.72]

    Химическая коррозия имеет окислительно-восстановительный характер и происходит в результате взаимодействия металла с разрушающим его веществом, например с кислородом воздуха, водой, сероводородом, сернистым газом (особенно при высоких температурах). [c.322]

    Получение простых веществ, например, железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д. и ценных химических продуктов, например, аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. [c.3]

    Проведение опыта. Закрыть колбу резиновой пробкой, через которую пропущены две согнутые под прямым углом трубки (не доходящие до дна на 4—5 см) и одна короткая трубка (рис. 16). На дно колбы налить немного воды. Через длинные трубки пропустить в колбу сероводород и сернистый газ. Колбу следует время от времени встряхивать, чтобы ее стенки оставались влажными. Через некоторое время на них появляется светло-желтый осадок серы, которая образуется в результате восстановительно-окислительного взаимодействия сернистого газа и сероводорода, катализируемого водой. [c.54]

    Характеристические соединения. Кислоты, содержащие серу, и их соли. При сжигании серы на воздухе образуется диоксид серы (сернистый газ), обладающий резким запахом. Он токсичен, легко сгущается в неэлектропроводную жидкость. В технике диоксид серы получают при окислительном обжиге сульфидов металлов, а в лаборатории действием концентрированной серной кислоты на медь -  [c.317]

    Это придает им свойства окислителей, сами хиноны при этом восстанавливаются до соответствующих гидрохинонов (например, в кислой среде хинон восстанавливается под действием сернистого газа). Окислительный потенциал хинонов повыщается, если в ядре находятся электроноакцепторные заместители, так что, например, хлоранил представляет собой довольно сильный окислитель (см. разд. Г,6.6). [c.30]


    В качестве восстановителей при химическом обескислороживании воды применяют сернистый газ (оксид серы (IV)), сульфит и тиосульфат натрия, гидразин, а также железо (сталестружечные фильтры). Окислительно-восстановительные реакции, протекающие при обескислороживании воды этими реагентами, можно изобразить следующими уравнениями  [c.651]

    Однако на практике невозможно избежать небольшой затраты серной кислоты на окислительные процессы, сопровождающиеся образованием сернистого газа. [c.77]

    I—V, носит общее название процесса Клауса [1—4]. Широко распространенная печь Клауса является лишь одним и притом наиболее примитивным агрегатом, в котором осуществляется этот процесс. Для улучшения работы окислительных печей большое значение имеет полное использование реакции VI взаимодействия между сернистым газом и сероводородом. На скорость этой реакции, помимо температуры оказывают влияние выбор катализатора и присутствие в реакционном объеме сконденсированной влаги. [c.178]

    Химические факторы — состав и реакция среды, а также ее окислительно-восстановительные действия. В окружающей среде могут содержаться вещества, которые стимулируют или ингибируют жизнедеятельность микроорганизмов. Стимулируют жизнедеятельность микроорганизмов различные загрязнения. Они же являются важнейшим фактором инициирования процесса биоповреждений. Биоцидное действие для многих микробов оказывают соли тяжелых металлов (ртути, свинца, серебра, меди), галогены, некоторые галоиды и окислители, особенно хлорид бария, перекись водорода, перманганат и бихромат калия, борная кислота, углекислый и сернистый газы, фенол, крезол, формалин. Природа действия этих веществ различна, результат практически один — гибель [c.18]

    Третья группа объединяет окислительно-восстановительные соединения — сернистый газ и окислы азота. В их присутствии коррозия железа протекает с большой скоростью и без кислорода [25]. [c.8]

    Выбор материала труб и деталей змеевика определяется их функциями и условиями эксплуатации, параметрами процессов, протекающих на внутренней и внешней их поверхности. Печи пиролиза работают циклически стадия пиролиза сменяется стадией выжига кокса. При этом изменяются температурный режим и среда в змеевиках — при пиролизе она восстановительная, при выжиге кокса, как правило, окислительная. Материалы труб змеевиков должны выдерживать высокие рабочие температуры (выше 1 000°С), перепады температур между металлом и технологическим потоком (100—300 °С), термические удары, возникающие при смене циклов, науглероживание и коррозию наружной поверхности труб при наличии в составе дымовых газов сернистых газов. Змеевики печен среднетемпературного пиролиза оснащаются горячедеформированными (горячекатаными) трубами, а для высокотемпературного пиролиза используют трубы, изготовленные методом центробежного литья. [c.136]

    Полагают, что одним из основных естественных источников серы в тропосфере является эмиссия НгЗ, обусловленная процессами разложения микробами живых организмов и продуктов их жизнедеятельности, наблюдающимися преимущественно на болотистых площадях [285]. Хорошо известно, также, что в слабо проточных морях (например. Балтийском и Черном) в глубинных водах скапливается колоссальное количество НгЗ. Однако до сих пор неясно, способен ли НгЗ в значительных количествах преодолевать окислительный фильтр , который должны представлять для него богатые. кислородом поверхностные воды. Существуют данные, относящиеся к побережью Панамы и о. Барбадос [220], согласно которым концентрация сернистого газа снижается по мере удаления от побережья в глубь материка. С другой стороны, в работе [142] и более раннем исследовании [235] не обнаружено ни в поверхностных водах, ни в атмосфере над ними присутствия НзЗ. [c.16]

    Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления - восстановления. Получение простых веществ (железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д.) ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов И т. д. было бы невозможно без использования окисли-тельно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа перманганатометрия, ио,дометркя, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.75]

    На рис. 57 показаны частотные характеристики возмущения (кривая 1), ступени дозирования колчедана вместе с печью (кривая 2), колебаний со<става газа после печи (кривая 3), участка переработки сернистого газа вместе с узлом окислительного объема и абсорбции (кривая 4), колебаний состава газа после абсорбционных башен (кривая 5). [c.146]

    Характерным примером окислительного обжига является обжиг сульфидных руд в производствах цветных металлов и серной кислоты. При взаимодействии компонентов сульфидных руд с кислородом воздуха металлы окисляются с образованием окисей, а сера с образованием сернистого газа. Другой характер окисления имеет место при газификации твердого топлива, когда органическая часть топлива превращается в горючий газ путем неполного окисления топлива кислородом воздуха или водяным паром. При газификации получают газы, применяемые для синтезов или как беззольное топливо. [c.118]

    В ряде работ, проведенных методом теории ансамблей, было выяснено, что элементарный акт каталитических окислительно-восстановительных процессов протекает на одноатомном активном центре. Этот факт был установлен для окисления сернистого газа на платине и палладии, нанесенных на силикагель и алюмогель [10] для окисления аммиака на платине, нанесенной на силикагель [И] и алюмогель [12] для окисления сульфит-ионов [13] для восстановления нитрофенола и пикриновой кислоты на платине на угле [14] для восстановления ацетона на никеле в смешанных катализаторах Ni/MgO [15] и, наконец, для разложения перекиси водорода на различных адсорбционных катализаторах [13, 14, 16—19]. В дальнейшем будет рассматриваться этот последний процесс при использовании платиновых адсорбционных катализаторов на угле [20], силикагеле [21], окиси кадмия [19] и кадмии [18]. [c.123]

    Олефины с третичным углеродным атомом образуют полимер при нагревании их раствора в слабой кислоте. Так, нанример, при нагревании раствора изобутилена в 63%-пой серной кислоте образуется довольно четкая смесь диизобутилена и триизобути-лена [27]. С увеличением концентрации кислоты за счет образования спирта возрастает полимерообразоваппе, полимер образуется даже без нагрева кислотного экстракта. Одновременно происходит изомеризация, и смесь ди- и триизобутилена становится все менее четкой. Наконец при очень высокой концентрации кислоты наступают реакции гидрополимеризации (так называемой сопряженной полимеризации, см. гл. И), происходят окислительно-всстановительные реакции между полимером и кислотой, в результате которых образуется углерод и выделяется сернистый газ. Кислота в этом процессе может быть восстановлена путем насыщения обычной ионсодержащей солью. [5]. [c.226]

    Режимы окислительных процессов также разнообразны. Окисление аммиака на платине и метанола на серебряном катализаторе — примеры внешнедиффузионной области процесса. Внутридиффузион-ный режим характерен для процесса окисления сернистого газа на ванадиевых катализаторах. Ряд окислительных процессов протекает в кинетической области, особенно если они происходят в кипящем слое катализатора. [c.137]

    Для окончательного суждения о проявлении восстановительных или окислительных свойств серы в различных степенях окислени-я провести следуюш,ий опыт. Поместить в пробирку микрошпатель кристаллов сульфита натрия, прибавить 5—6 капель 2 н. раствора серной кислоты и после полного растворения кристаллов пропустить через прозрачный раствор струю сероводорода до выпадения серы (опыт проводить в вытяжном шкафу). Написать уравнение взаимодействия сернистого газа, образовавшегося при растворении сульфита натрия в серной кислоте, с сероводородом. [c.98]

    Диоксид серы. Окислительно-восстановительные свойства диоксида серы ЗОг (сернистый газ) можно изучать, используя его в газовом состоянии (пропускать через раствор реагента) или же в виде водного раствора— сернистой Кислоты. Такие же результаты получаются при использовании подкисленных растворов сульфитов КааЗОз или Кг50з. [c.279]

    Концентрированная серная кислота H2SO4 принадлежит к числу довольно сильных окислителей, особенно при нагревании. Проявляя окислительные свойства, H2SO4 чаще всего восстанавливается до сернистого газа SO2, а с более сильными восстановителями может восстанавливаться до свободной серы S или до сероводорода HjS, например  [c.196]

    Таким образом, сернистый газ, сернистая кислота и ее соли могут проявлять как окислительные, так и восстановительные свойства, однако практически для этих соединений наиболее характерны восстановительные свойства. Сернистая кислота практического значения не имеет, однако ее соли, особенно МагЗОз и NaHSOs, широко используются в фотографии. Двуокись серы получается при обжиге железного колчедана, в огромных количествах используется для получения серного ангидрида с последующим получением серной кислоты. [c.295]

    Х25Н13Т Литье Литые детали, предназначенные для работы при высокой температуре в окислительных средах и газах с малым и средним содержанием сернистых газов. Максимальная рабочая температура стенки в нагруженном состоянии 650 С [c.230]

    Поместите в пробирку 1 каплю метилового спирта (50). Возьмите небольшую спираль из медной проволоки (рис. 22). Держа спирали пинцетом за верхний конец, нагрейте ее докрасна в окислительно.у пламени микрогорелки. Удалив спираль из огня, убедитесь, что онщ покрылась слоем окиси меди черного цвета. Еще горячу спираль сейчас же опустите в пробирку с 1 каплей спирта. Черная поверхность спирали мгновенно превращается взолотИ с т у ю за счет восстановления окиси меди. Одновре менно можно определить образование формальдегида по характерному резкому запаху Эта реакция используется для судебно-химическоге открытия метилового и этилового Спиртов По запаху получающихся соответствующих им альдегидов. Бол убедительным доказательством появления формальде гида служит цветная реакция с фуксиносе нистой кислотой (раствор фуксина, ченный сернистым газом). [c.52]

    Пятиокись ванадия обменивает свой кислород с кислородом газовой фазы при температуре выше 450°, а каталитическое окисление протекает в этой же температурной области. Ройтер, Стукановская и Великовская [204] сопоставили скорости изотопного обмена кислорода и каталитического окисления сернистого газа. Они установили, что ири 500° скорость обмена в 10 раз меньше, чем скорость окислительно-восстановительного катализа. Если каталитическое окисление SO г протекало бы но окислительно-восстановительному механизму, то [c.95]

    Схема башенного сернокислотного цеха с 6-ю печами пылевидно го обжига приведена на рис. 56, а на рис. 56, б показаны амплитудно-частотные характе ри-стики (АЧХ) двух объектов авто матического регулирования, входящих в состав общего технологического тракта цеха. Линия А соответствует первому объекту, которым является участок ступени дозирования колчедана совместно с первым участком перера)ботки (обжигом колчедана). Линия Б соответствует второму объекту, которым является один из участков последующей переработки сернистого газа (узел окислительного объема и абсор1ЙЦи.и). [c.143]

    Кривые спектральной плотности колебаний содержания / — влаги в колчедане на тарели питателя, <% Н20)2-с/рад — 302 в газе после. печей, (% 302) -с/рад 5 — разности (N02—N0) в газе перед окислительным объемом (% (N02— N0)]2 /paд 7 — разности (N02— N0) в газе после абсорбционных башен, (% (N02—1 0)]2 с/рад кривые квадрата амплитудно-частот- ых характеристик участков 1 — обжига, % 802/% НгО при установке автоматических регуляторов подач колчедана в печи по варианту Г 4 — пepepaбiэткн сернистого газа, [ /о (Ы02 Ы0)М ЗОз] 6 — окислительного объема и абсорбции при установке автоматического регулятора окислительного объема по варианту Е, i /o(N02— N0)/% N02—N0)12 для сравнения зачерненным квадратиком отмечено допустимое значение среднеквадратического отклонения, составляющее 0 05% (N02—N0) для удобства на оси абсцисс помимо шкалы частот <1) нанесена шкала периодов колебаний Т, [c.149]

    Детальному рассмотрению подвергнут вопрос о возможности цепных реакций в объеме фазы при обычном гетерогенном и энзиматическом катализе. В работах М. В. Полякова по гетерогенно-гомогенным окислительным реакциям показана возможность зарождения цепей на твердых поверхностях и перехода их в объем. Опытами А. Н. Баха, Н. Н. Семенова, И. В. Мочан и других исследователей показано также, что < катализ на расстоянии может наблюдаться в тех случаях, когда с поверхности контакта в фазу могут поступать активные частицы, способные зарождать гомогенные цепи. И. М. Ковальский недавно разработал метод одновременного контроля течения реакции в объеме и на поверхности и установил, что ряд реакций (например, восстановление сернистого газа окисью углерода, взаимодействие хлора с водородом в присутствии кислорода и др.), считавшихся типично гетерогенными, в действительности протекает по цепному механизму в объеме и только индуцируется катализаторами, т. е. одновременно происходят объемный и поверхностный процессы. [c.10]


Смотреть страницы где упоминается термин Окислительное сернистым газом: [c.228]    [c.40]    [c.439]    [c.420]    [c.294]    [c.120]   
Каталитические свойства веществ том 1 (1968) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте