Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия системы

    Квантовый характер излучения и поглощения энергии. Примерно в начале XX в. исследования ряда явлений (излучение раскаленных тел, фотоэффект, атомные спектры) привели к выводу, о энергия распространяется и передается, поглощается и испускается не непрерывно, а дискретно, отдельными порциями — квантами. Энергия системы микрочастиц также может принимать только определенные значения, которые являются кратными числами квантов. Таким образом, энергия этих систем может изменяться лишь скачкообразно или, как говорят, она квантуется. [c.10]


    Уравнения (21) и (22) известны как уравнения Гиббса — Гельмгольца часто это название применяется и к уравнениям (15) — (18). Уравнения Гиббса — Гельмгольца связывают между собой изменение энергии системы с количеством выделенной или поглощенной ею теплоты. Вместо (17) и (18), учитывая (12) и (13), можно написать [c.16]

    Самопроизвольный процесс сопровождается снижением энтальпии и возрастанием энтропии, т. е. уменьшением полной энергии системы и увеличением ее неупорядоченности. [c.38]

    Гиббс ввел понятие свободная энергия . (Необходимость введения этого понятия была обусловлена тем, что измерить изменение величины свободной энергии легче, чем измерить изменение энтропии.) Любая химическая реакция сопровождается изменением свободной энергии системы. Изменение теплосодержания строго соответствует уменьшению свободной энергии и увеличению энтропии. Поскольку обычно самопроизвольные реакции сопровождаются выделением теплоты, то теплосодержание системы при протекании таких реакций уменьшается. Однако в некоторых, хотя и считанных случаях изменение свободной энергии и энтропии бывает таким, что теплосодержание системы увеличивается, и тогда самопроизвольная реакция идет с поглощением энергии. [c.113]

    V При экзотермических реакциях теплота выделяется, т.е. уменьшается энтальпия, или внутренняя энергия, системы, и значения АН VI А и для них отрицательны. При эндотермических реакциях теплота поглощается, т. е. Я и 11 системы возрастают, а ДЯ и Аи имеют положительные значения  [c.160]

    Энергетический эффект химического процесса возникает за счет изменения в системе внутренней энергии U или энтальпии Я. Внутренняя энергия — это общий запас энергии системы, который складывается из энергии движения и взаимодействия молекул, энергии движения и взаимодействия ядер и электронов в атомах, молекула л и кристаллах, внутриядерной энергии и т. п. (т. е. все виды энергии, кроме кинетической энергии системы как целого и ее потенци-альной энергии положения). [c.159]

    Информация о числе молекул, имеющих данную скорость, называется функцией распределения по скоростям. Б данном случае подобная информация непосредственно дает величину полной энергии системы, так как она является арифметической суммой кинетических энергий всех индивидуальных частиц. Если N v ) означает число молекул, имеющих скорость то общая кинетическая энергия (полагая массы одинаковыми) будет равна [c.114]


    Гиббс также показал, что с изменением концентрации веществ, образующих эту систему, свободная энергия системы до некоторой степени меняется. Поэтому если свободная энергия, определенная при стандартных значениях концентраций, для А+В ненамного отличается от свободной энергии С+О, то даже небольшие изменения концентрации могут привести к тому, что свободная энергия А+В окажется больше или меньше, чем свободная энергия С+О. В такой системе направление реакции определяется соотношением концентраций, но и в том, и в другом направлении реакция пойдет самопроизвольно. [c.113]

    Химическая связь образуется только в том случае, если при сближении атомов (двух или большего числа) полная энергия системы (сумма кинетической и потенциальной энергий) понижается. [c.43]

    Таким образом, образование химической связи в Нз обусловлено тем, что электрон двигается около двух ядер между ядрами появляется область с высокой плотностью отрицательного заряда, который стягивает положительно заряженные ядра. Притяжение уменьшает потенциальную энергию системы, а следовательно, и полную энергию системы — возникает химическая связь.  [c.46]

    Предположим, что некоторая система за счет поглощения теплоты Q переходит из состояния 1 в состояние 2. В общем случае эта теплота расходуется на изменение внутренней энергии системы ДО и на совершение работы претив внешних сил Л Q = Ai/ + Л. [c.159]

    Это классическое определение, берущее начало от В. А. Кистя-ковского и отвечающее принципам классификации наук, сформулированным Ф. Энгельсом, сохраняется как основа нового определения. Оно дополняется, однако, характеристикой признаков, присущих электрохимическим явлениям электрохимия изучает взаимное превращение химической и электрической форм энергии, системы, в которых это превращение соверш.ается (в равновесии и в динамике), а также все гетерогенные явления и процессы, равновесие и скорость которых определяются скачком потенциала между граничащими фазами и связаны с переносом зарядов через границы фаз в виде расчлененных актов окисления и восстановления. [c.9]

    Изменение внутренней энергии системы представляет собой изменение а) кинетической энергии поступательного и вращательного движения молекул, б) сил притяжения и отталкивания между молекулами, в) внутримолекулярной вибрации и вращения отдельных атомов и электронов в молекуле и т. п. В случае идеальных газовых систем, при чисто физических процессах, изменение внутренней энергии состоит лишь в изменении кинетической энергии молекулярного движения, т. е. в изменении температуры газа. [c.67]

    По оси ординат отложена потенциальная энергия системы. Исходное состояние имеет энергию конечное 2 кон- Разность энергий начального и конечного состояний системы равна тепловому эффекту реакции ДЯ  [c.196]

    При помощи универсального соотношения (10.40), задав внутреннюю энергию системы и использовав (10.41), (10.42), можно вывести уравнение энергии для фильтрационного потока. [c.318]

    Если для простоты рассмотреть некоторое количество газа в жестко 1 сосуде с совершенно не пропускающими стенками, то очевидно, что он будет равномерно распределен по всему сосуду и система будет характеризоваться состоянием равновесия, т. е. определенной энергией и одинаковыми давлением и температурой по всему сосуду. С молекулярной точки зрения давление возникает в результате хаотических отклонений молекул со стенками, и энергия системы просто равна сумме энергий отдельных молекул. Если бы мы каким-либо путем получили сведения не об отдельных молекулах, а о числе молекул, имеющих данную скорость , то, используя несколько простых предположений, нетрудно было бы показать, что, исходя из этого, можно вычислить термодинамические свойства газа. [c.114]

    ЦБ. Неупругие столкновения. Под неупругими столкновениями подразумеваются такие столкновения, при которых изменяется общая поступательная энергия системы. Прирост или убыль поступательной энергии должны, конечно, компенсироваться другими изменениями в сталкивающихся системах. Чаще всего при этом изменяется вращательная или колебательная энергия. В исключительных случаях может происходить изменение электронной энергии. [c.149]

    Математическое выражение первого закона термодинамики показывает, что закон этот дает только количественную характеристику одного из свойств тепловой и внутренней энергии системы эквивалентность перехода их в работу и, наоборот, работы в тепловую и внутреннюю энергию. Однако этот закон не выявляет направленности процесса, т. е. не дает качественной характеристики проявления тепловой энергии. Эту вторую сторону важнейшего свойства тепловой энергии — направленность ири переходе ее в работу или в другой вид энергии — устанавливает второй закон термодинамики, на котором мы остановимся ниже (стр. 158). При расчете технологических процессов исключительно большое значение имеют процессы, связанные с расширением или сжатием газа. Если в подобного рода процессах под влиянием внешнего давления Р происходи г изменение объема данной системы от Vi до V2, то работа, совершаемая ею, равна  [c.67]


    Поступательную энергию системы всегда можно отделить от внутренней энергии, и для N частиц (в отсутствие полей) справедливо соотношение [c.185]

    Теперь, допуская, что внутренние энергии частиц АиВ могут быть представлены энергией системы классических гармонических осцилляторов, мы можем вычислить ZAв Е) — частоту соударений, для которой полная внутренняя энергия и энергии вращения и поступательного движения соударяющихся молекул лежат между Е и Е Е  [c.244]

    Это уравнение может быть выведено из условия, что при постоянной температуре полная свободная энергия системы (пар -Ь кайля) [c.558]

    При изохорном процессе (V = onst), поскольку изменения объема системы не происходит, Л = 0. Тогда переходу системы из состояния 1 в состояние 2 отвечает равенство = U2 — 1 = = At/. Таким образом, если химическая реакция протекает при постоянном объеме, то выделение или поглощение теплоты Qv связано с изменением внутренней энергии системы. [c.159]

    АГ — изменение свободной энергии системы при температуре Т. [c.170]

    Ре " — Ре+ при тех же условиях Е2 = + 0,748 в. Определить а) какой из полюсов будет отрицательным б) э. д. с. цепи в) стандартное изменение свободной энергии системы. [c.261]

    V—L — конденсация, для которых характерны явления метастабильности. Во всех этих переходах образование новой фазы происходит через возникновение ее трехмерных зародышей и неизбежно связано с увеличением границы раздела, а следовательно, и с возрастанием энергии системы. Трехмерным зародышем называется микрообразование новой фазы с размерами, обеспечивающими установление равновесия между ним и окружающей средой, т. е. старой фазой, внутри которой оно возникает. При переходах Si->S2, L S и V->S трехмерный зародыш — это зародыш твердой фазы, возникший в результате соответствующих превращений прежней твердой Si (рекристаллизация, появление нового твердого химического вещества), жидкой L (кристаллизация, выпадение осадка) или газообразной V (десублимация) фаз. При переходах L- V и V- -l. это зародыши пара — пузырьки (кипение) или зародыши >кидкости — капли (конденсация). [c.329]

    При электрохимическом образовании новой фазы в отличие ог обычных фазовых превращений ее энергетический уровень не обязательно должен быть ниже уровня исходной фазы, т. е. процесс может совершаться и в направлении увеличения энергии системы, которая поставляется в форме электрической энергии. Направление перехода в этом случае определяетс я не столько температурой и давлением, сколько величиной и знаком электродного потенциала. [c.333]

    Такое допущение правомерно вследствие большого различия масс электронов и ядер если ядра сдвигаются, то распределение электронной плотности мгновенно приспосабливается к их новому положению, тогда как положение ядер от перемещения легких электронов не зависит. Рассчитав энергию системы при разных расстояниях между ядрами, можно построить график зависимости энергии системы от расстояния между ядрами. При изменении расположения ядер меняется энергия электрона, а потому и энергия молекулы. Сле1овательно, кривые потенциальной энергии молекулы (рис. 22) отражают зависимость энергии электрона от расстояния между ядрами. [c.45]

    На рис. 22 приведены возможные уронни энергии Н2 в зависимости от расстояния между ядрами. По оси абсцисс отложено расстояние между ядрами, а по оси ординат — потенциальная энергия системы. Нетрудно догадаться, что основному состоянию молекулярного иона На отвечает наиболее низкий энергетический уровень. Характер нижней кривой на рис. 22 можно объяснить тем, что по мере сближения протона и атома водорода вначале преобладают силы прр тяжения, а затем силы отталкивания, поэтому вначале наблюдаете 1 монотонное понижение потенциальной энергии системы, по достижении же минимума — резкое ее увеличение. Минимум на кри-во потенциальной энергии отвечает наиболее устойчивому состоя- [c.45]

    Здесь дано упрощенное толкование причины понижения полной энергии системы. На самом деле, при образовании молекулы из атомов имеет место сложная картина изменения потенциальной и кинетической энергии электрона. Однако согласно так называемой теореме аириала в системе, где действуют ку. лоновские силы, средняя потенциальная энергия частиц и равна взятой с обратным знаком удвоенной средней кинетической энергии частиц К -У = —2К, т е. А и = —2А К. Поскольку полная энергия Е = и К, ее изменение [c.46]

    Величину Я называют энтальпией. Энтальпию можно рассматривать как энергию расширенной системы. Таким образом, если при нзохорном процессе энергетический эффект реакции равен изменению внутренней энергии системы Q / = АС/, то в случае изобарного процесса он равен изменению энтальпии системы = ЛЯ. [c.160]

    Энтальпия / измеряется в ккал, а г — в ккал1кг. Таким образом, из сказанного можно сделать следующий вывод. Энтальпия любой термодинамической системы (в том числе и пластовой) есть общая энергия этой системы, равная сумме внутренней энергии системы и потенциальной энергии давления. [c.73]

    С учетом выражений (И.75) и (11.76) уравнение (11.74) несложно упростить. Вйражения (И.42), (П.45), (И.74), (11.76) позволяют прийти к следующей мысли. Изоэнтальпийный и изоэнтропийный процессы в изолированной пластовой системе протекают без теплообмена с окружающей средой. Разница состоит в том, что в адиабатическом и (изоэнтропийном) процессе внешняя работа совершается за счет понижения внутренней энергии системы, а при изоэнтальпийном (дроссельном) [c.79]

    Производным понятием термодинамики является энтальпия (Я)-—полная энергия системы, состоящая из внутренней энергии и работы, которую нужно было затратить, что5ы ввести систему с объемом V во внешнюю среду с давлением р. [c.37]

    А. Связь между скоростью реакции и свободной энергией. Скорость реакции вблизи равновесия. Движуш,ей силой химической реакции в изотермических условиях является разность свободных энергий реагентов и продуктов реакции. В равновесии эта разность равна нулю. Хотя это обстоятельство ничего не говорит о том, будет ли происходить реакция, оно показывает, что если реакция будет осуш,ествляться, то она пойдет п направлении понижения свободной энергии системы. Поэтому ваншо выяснить, может ли термодинамика дать какую-нибудь связь между скоростью и изменением свободной энергии. Подобное исследование было проведено Пригожиным с сотрудниками [251, расширено Майнсом с сотрудниками [24] и привело к следун щим результатам. (Вывод, приведенный здесь, отличается от предлогкенного этими авторами, и результаты имеют более обш,ий вид.) [c.71]

    Из первого закона термодинамики следует, что АЕ = AQ — АШ — АКЕ, где АКЕ — изменение общей кинетической энергии системы. Если рассмотреть единицу массы газа, то вся работа, совершенная этой массой при пересечении границы удара, равна АШ = Рв/Яа — РиЫи- Пренебрегая излучением, получаем AQ = О (адиабатический случай) и АЕ = —АУ7 — АКЕ. Если это отнести к единице массы газа, то получим [c.407]

    Особо важное значение в химических процессах имеет термодинамический потенциал, т. е. изменение свободной энергии системы (А/ ). Выражая собой ту часть внутренней энергии системы, которая способна превращаться в полезную работу, величина ДР данного химического процесса служит тем самым мерой химического сродства реагирующих компонентов, т. е. мерой их реакционной способности. Чем больше абсолютная величина изменения свободной энергии или, что то же, чем больше значение максималыюи работы данного химического процесса, тем полнее они вступают между собой в химическое взаимодействие. Если мы говорим, что данные вещества реагируют между собой недостаточно энергично, то это означает, что они имеют небо,пьшое изменение свободной энергии в наблюдаемом процессе химического взаимодействия или, что то же, максимальная работа, которую требуется затратить на этот процесс, очень велика [c.167]

    Таким образом, ве 1ичина свободной энергии системы показывает меру реакционной способности взаимодействующих компонентов, а знак ее — направленность данного процесса. Так, например, реакция [c.168]

    Из уравнений (84) — (87а) для термодинамических функций видно, что величина свободной энергии системы зависит от ее теплосодержания (Af = А/ — TAS), а следовательно, и от теплоемкости реагирующих веществ. На основании уравнений (82) п (87а) эта зависимость в дифференциальной форме может быть р.ыражена  [c.169]

    В этой конформации две группы атомов водорода по обе стороны плоскости кольца сближены по направлению к центру молекулы и конформационно взаимодействуют между собой. Благодаря этим взаимодействиям в молекуле создается дополнительное внутреннее напряжение. При этом сближение двух Н-атомов приводит к перекрыванию их ван-дер-ваальсовых радиусов. Удаление этих сближенных атомов и образование новой С—С-связи уменьшает энергию системы, делая ее менее напряженной. Указанные стерические факторы и энергетический эффект благоприятствуют протеканию трансаннулярной Сз-дегидроциклизации циклооктана с образованием системы пенталана. Протекание этой реакции в присутствии Pt/ осуществляется, как нам кажется, через промежуточное образование циклического переходного состояния. Образование последнего происходит, по-видимому, по схеме, сходной с механизмом гидрогенолиза циклопентанов и Сз-дегидроциклизацни алканов (для упрощения схемы на ней не показаны атомы катализатора, соединенные со сближенными атомами Н и С адсорбционными связями)  [c.155]


Смотреть страницы где упоминается термин Энергия системы: [c.14]    [c.32]    [c.72]    [c.175]    [c.176]    [c.224]    [c.105]    [c.105]    [c.132]    [c.159]    [c.168]    [c.68]   
Введение в молекулярную теорию растворов (1959) -- [ c.36 , c.47 , c.48 , c.53 , c.157 ]

Общая химия (1974) -- [ c.130 , c.132 ]

Введение в молекулярную теорию растворов (1956) -- [ c.36 , c.47 , c.48 , c.53 , c.157 ]

Термодинамика (1991) -- [ c.24 ]

Термодинамика (0) -- [ c.19 , c.20 , c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте