Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы разделения компонентов нефти и газа

    МЕТОДЫ РАЗДЕЛЕНИЯ КОМПОНЕНТОВ НЕФТИ И ГАЗА [c.72]

    Физические методы разделения компонентов нефти, газа и продуктов их переработки [c.65]

    Правильная оценка роли отдельных составляющих нефтей в процессе образования смол и асфальтенов при высоких температурах требовала исследования высокотемпературных процессов превращения нефтепродуктов, содержащих основные компоненты (углеводороды, смолы, асфальтены) в неизменном состоянии и в широком спектре их количественных соотношений. С этой целью отбензиненная ромашкинская нефть разделялась на концентраты с различным содержанием углеводородных и неуглеводородных компонентов. Для разделения был использован предложенный М. А. Капелюшниковым метод так называемой ретроградной конденсации, или холодной перегонки [16]. В качестве растворителей были использованы углеводородные газы под давлением, и все компоненты нефти, кроме асфальтенов, удалось перевести при сравнительно низких температурах (не выше 100—140° С) в надкритическое состояние. Затем при ступенчатом снижении давления в системе осуществляется фракционирование, которое идет в обратном, по сравнению с горячей перегонкой, порядке — сначала выделяются наиболее высокомолекулярные компоненты, затем средние и т. д. Были получены образцы широкого фракционного состава (200°—к.к.) и не менее широкого компонентного состава образец 1 содержал 94,8% углеводородов и 5,2% смол образец 2— 72,4% углеводородов, 25,6% смол и 2,0% асфальтенов, образец 3— 38,7% углеводородов, 47,0 % смол и 14,3 % асфальтенов. [c.30]


    Хроматография как метод физико-химического разделения компонентов смесей газов или жидкостей осуществляется путем сорбции в динамических условиях. Исследуемую смесь вводят в хроматографическую колонку в виде стеклянной трубки, заполненной адсорбентом. Наибольший успех в применении хроматографии достигнут при анализе газов - природных или искусственных, жидких углеводородов переработки нефти и каменных углей. Уровень техники анализа таков, что вмонтированный в прибор компьютер позволяет определить массовую долю исследуемых компонентов в смеси автоматически. Количественную расшифровку хроматограмм проводят по методу внутренней нормализации с измерением высоты пиков и расстояния максимума пика от момента ввода пробы. [c.79]

    Существует много разновидностей хроматографического метода. Для разделения компонентов нефти применяется в основном жидкостная адсорбционная хроматография. По этому методу разделение жидких смесей на фракции ведется в колонках, заполненных адсорбентом, чаще всего силикагелем. Исследуемую жидкость вводят в колонку. Вязкие продукты предварительно растворяют в пентане или другом растворителе. Для ускорения прохождения по колонке пробы и десорбентов применяют давление инертного газа. В процессе адсорбции выделяется теплота. Под влиянием этой теплоты и каталитического воздействия самого адсорбента возможно развитие таких химических реакций с адсорбированными веществами, как окисление и полимеризация. Во избежание этого колонку следует охлаждать. [c.54]

    Основной принцип исследования химического состава нефти заключается в том, что, комбинируя разнообразные методы разделения веществ, достигают вначале постепенного упрощения состава отдельных фракций исходной нефти. Химическая природа и молекулярное строение отдельных компонентов нефти при этом не должны изменяться. Полученные фракции затем анализируются химическими, хроматографическими, спектральными и другими методами. В результате такого исследования в зависимости от молекулярной массы и сложности смеси в выделенных фракциях удается установить либо содержание отдельных индивидуальных веществ (при анализе газов и легких фракций до 150°С), либо содержание отдельных групп углеводородов или других компонентов нефти, либо относительное распределение структурных элементов в гибридных молекулах (в тяжелых фракциях нефти). [c.56]


    Химические методы разделения и идентификации компонентов нефти и газа в значительной степени /тратили свое значение с развитием хроматографии и других физических и физико-химических методов. Одиако в ряде специфических случаев химические методы остаются необходимым дополнением к полной схеме разделения, в особенности для гетероатомных компонентов нефти и непредельных углеводородов. Разделение основано на различной способности компонентов при реакциях гидрирования и дегидрирования, сульфирования, изомеризации, галогенирования и т. д. [c.80]

    Современное развитие химических и биологических наук истребовало более глубокого проникновения в существо изучаемых процессов, детального анализа химического состава разнообразных смесей и биологических объектов. Кроме того, для химического и биотехнологического ироизводства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев ири оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Рещение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы — от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хроматографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций ио различным вопросам теории и применения метода, общее же их число в несколько раз больше. [c.5]

    Более детальные сведения о химических методах разделения и идентификации компонентов нефти и газа приведены в соответствующих главах. [c.81]

    В качестве метода разделения и исследования нефтей и нефтяных фракций применяют метод термической диффузии. Процесс термодиффузии идет в кольцевом пространстве между стенками двух коаксиальных цилиндров, куда помещается исследуемая жидкость или газ. Температура стенок поддерживается различная. В результате конвекции жидкость или газ начинают циркулировать, при этом более тяжелые компоненты двигаются по направлению к более холодной стенке и концентрируются на дне, а более легкие — по направлению к теплой стенке и собираются в верхней части колонки. Метод применяется для разделения углеводородов смазочных масел, причем разделение происходит в соответствии с числом колец. В нижней части колонки концентрируются компоненты с наибольшим числом колец. В некоторых случаях термическую диффузию используют для разделения газов и паров. [c.231]

    Химические методы разделения и идентификации компонентов нефти и газа в значительной степени утратили свое значение с развитием хроматографии и других физических и физикохимических методов. Однако в ряде специфических случаев химические методы необходимы для полного разделения нефти, особенно для выделения гетероатомных соединений и непредельных углеводородов. [c.99]

    Процессы конденсации паров и газов применяются при химической переработке твердого топлива (выделение смолы из коксового газа и газов полукоксования) в производстве фосфора, спиртов, аммиака при разделении на компоненты коксового газа, газов крекинга нефти, крекинга метана и других методом охлаждения и фракционированной конденсации при получении азота и кислорода глубоким охлаждением воздуха при освобождении газов от паров воды во многих производственных процессах и т. д. [c.115]

    В настоящей главе дается краткий обзор современных методов исследования состава нефтей и газов и способов идентификации их компонентов. Современный уровень аналитической техники позволяет производить идентификацию почти всех индивидуальных компонентов газов и бензиновых фракций до Сд—Сю. Такого рода анализы уже выполняются серийно. Определение индивидуальных компонентов в керосиновых и газойлевых фракциях от Сю до Сго возможно только частично, хотя групповое разделение и выделение различных классов соединений могут быть выполнены достаточно детально. [c.224]


    Газо-жидкостная хроматография еще недавно применялась только для углеводородных газов и легких топлив, главным образом, чтобы быстро количественно определить состав топлива или концентрацию какого-либо его компонента. Например, этот метод служит для непрерывного контроля за процессом (получения топлива, очистки его, разделения смеси компонентов, смешения компонентов и др.). В последние годы газо-жидкостную хроматографию используют для анализа бензиновых фракций прямой перегонки [55—58], смесей бициклических углеводородов (ароматических, нафтеновых) [36, 59—63], продуктов вторичных процессов переработки нефти (бензинов, газойлей каталитического крекинга) [33, 62, 64], для разделения сернистых соединений и углеводородов и др. [c.214]

    Применяя газы под высоким давлением, авторам удалось перевести в критическое состояние все компоненты нефти, за исключением асфальтенов и наиболее высокомолекулярных смол, при температурах, не превышающих 80—100°, а затем путем ступенчатого снижения давления в системе высаживать из нее различные фракции, начиная с наиболее высокомолекулярных, т. е. в обратном порядке, чем это происходит при обычной горячей перегонке. Метод холодной или изотермической перегонки напоминает метод дробного осаждения и имеет то же решающее преимущество, что и этот последний, перед изобарической, т. е. горячей перегонкой, в применении к разделению смесей термически нестойких высокомолекулярных органических соединений — исключение действия высоких температур на разделяемые смеси. [c.266]

    Разделение газов крекинга нефти и пиролиза нефтяного сырья на отдельные компоненты осуществляют либо абсорбционным методом, либо методом фракционированной конденсации. Абсорбционный метод разделения заключается в растворении в поглотительном масле отдельных компонентов газовой смеси. Выделенный из масла сырой продукт, представляющий смесь углеводородов, подвергается дальнейшей ректификации. Абсорбционный метод находит широкое применение для переработки главным образом естественных нефтяных газов на тяжелые фракции — пропиленовую, бутановую и пентановую. Газы же крекинга и термической переработки нефти, которые содержат значительное количество этилена и пропилена, требуют более четкого разделения, осуществляемого методом фракционированной конденсации, при котором производится непрерывный отбор образующегося конденсата. Этот метод приобрел практическое значение в установках разделения коксового и водяного газов, в гелиевой технике, а также при разделении углеводородных газов, получаемых пиролизом и крекингом нефти, с целью выделения чистых фракций метана, этана, пропана, этилена, пропилена, бутиленов, являющихся ценнейшим сырьем для новых отраслей химической промышленности. [c.283]

    ХРОМАТОГРАФИЧЕСКИЙ МЕТОД РАЗДЕЛЕНИЯ ВЫСОКОКИПЯЩИХ КОМПОНЕНТОВ НЕФТИ ПРИ ПОМОЩИ СЖАТЫХ ГАЗОВ [c.66]

    Нефть представляет собой сложную смесь жидких органических веществ, в которой растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе — на Индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом (с целью выделения парафинов нормального строения) и некоторые другие методы. Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, адсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки и т. п. При детальном исследовании химического состава нефти практически используются все перечисленные методы. [c.11]

    Хроматографический метод разделения высококипящих компонентов нефти при помощи сжатых газов. [c.217]

    Изучение состава нефти начинается с разделения этой сложной смеси на более простые или индивидуальные компоненты, процесс этот называется фракционированием. Методы разделения базируются на различных физических, поверхностных и химических свойствах разделяемых компонентов. При исследовании нефти и газа используют следующие методы разделения физическая стабилизация (дегазация), перегонка и ректификация, адсорбция, применение молекулярных сит (цеолитов), экстракция, кристаллизация из растворов, комплексообразование (карбамидом, тиокарбамидом) и др. Ис- [c.14]

    Вполне понятно, что наилучшего разделения компонентов достигают при разгонке нефтяных газов и петролейного эфира, состав которых несложен. С повышением температуры кипения нефтяных фракций их состав усложняется, растет число изомеров, сближаются точки кипения углеводородов, образуются трудноразделимые смеси. Кроме того, ароматические углеводороды, присутствующие в нефти, дают, как известно, с углеводородами других классов азеотропные смеси. Все это приводит к размазыванию углеводородов по разным фракциям. Так, например, бензол, который, как известно, кипит при 80,8°, появляется в дестиллате разгонки бензина на ректификационной колонке уже при 55—60°. Поэтому такие сложные смеси подвергают разделению, сочетая различные методы, как это видно, например, из материалов по определению детализированного состава бензинов комбинированным методом [52]. Во всех этих методах ректификация занимает большое место. [c.92]

    ЛО полное растворение газа в нефти. По истечении некоторого времени при постоянном давлении газ с нефтью отбирались в газометр. Исходная нефть для опыта и газ с нефтью после опыта анализировались на хроматографе Цвет методом газо-жидкостной и газо-адсорбционной хроматографии. Разделение углеводородных фракций нефти на составляющие ее компоненты происходило в колонке, заполненной инертным носителем, пропитанным сложным эфиром триэтиленгликоля и н-масляной кислоты, а выделившихся газов — азота, кислорода, метана — в колонке,заполненной цеолитами. [c.41]

    Метод глубокого охлаждения дает возможность использовать для синтеза аммиака любые газовые смеси, содержащие достаточное количество водорода или относительно бедные водородом смеси, содержащие ценные компоненты для синтеза других продуктов. В последнем случае водород при разделении смеси является отходом. Например, при разделении коксового газа целевым продуктом является азото-водородная смесь, а побочными — этиленовая и метановая фракции. Наоборот, щ)и разделении газов крекинга нефти целевыми продуктами являются олефины, а побочными — парафины и метано-водородная фракция, которая может быть использована для получения аммиака. В промышленности низкие температуры для разделения газовых смесей применяются, как правило, при малых значениях коэффициентов разделения или в тех случаях, когда выделение из смеси ее отдельных компонентов в иных условиях невозможно или экономически нецелесообразно. [c.194]

    Исследования в области геохимических методов поисков нефти и газа, начатые в СССР в лаборатории автора (Московский нефтяной институт), позволили разработать приборы, при помощи которых можно было определить до 10 —10 % (0,1—1 часть на миллион) углеводородных газов в воздухе или ином неуглеводородном газе. Эти приборы были основаны на химической очистке и вымораживании углеводородов с последующим их сжиганием. Разделительная способность приборов для углеводородных смесей была невелика, поэтому в дальнейших работах были применены адсорбционно-десорб-ционные хроматографические методы с получением кривых разделения в результате последовательного выделения отдельных компонентов или фракций [47, 81 ]. На рис. 103 в качестве примера показана кривая десорбции с поверхности стекла около 1 нмм газовой смеси. Компоненты — закись азота, этан, пропан, бутан — идентифицировали по времени их выхода из сорбционной трубки. Таким путем еще в 1937 — 1938 гг. было открыто широкое распространение в подпочвенном воздухе закиси азота (в концентрациях 10 —10 %). Приблизительно такие же фоновые концентрации наблюдались и для метана. [c.298]

    Одним из весьма важных разделов работы предприятий химической промышленности, особенно тех, которые связаны с переработкой газа и нефти, является контроль за разделением газовых и жидких смесей органических веш еств и получением чистых компонентов, а также разработка новых способов разделения смесей. Большую роль в этом играют хроматографические методы анализа разделения веществ. [c.3]

    Хроматографический метод, широко применяемый в последнее время в самых различных областях химии и технологии, находит применение и при разделении нефтей и нефтепродуктов. Эти сложные смеси хроматографическим методом разделяются частью на индивидуальные компоненты (газы и низкокипящие), частью на смеси компонентов, близких по их адсорбционным свойствам насыщенные углеводороды, олефины, ароматические углеводороды, спутники углеводородов, содерн ащие серу, азот и кислород. Эти смеси в свою очередь могут быть подвергнуты дальнейшему разделению. В ряде случаев адсорбционным методом можно выделить индивидуальные углеводороды и их спутники и очистить их от примесей. [c.35]

    Различают химические и физичест ие методы разделения компонентов нефти и газа. Химические методы основаны на неодинаковой реакционной способности разделяемых компонентов, а физические — на различии концентраций в сосуществующих равновесных фазах (табл. 5.1). [c.64]

    Применение газоадсорбционной хроматографии (ГАХ) для разделения неуглеводородных соединений, как правило, затруднено из-за высокой адсорбируемости ГАС и необходимости использования недбнустимо больших температур для их десорбции. В связи с зтим в анализе компонентов нефти наиболее часто используются методы газо-жидкостной хроматографии (ГЖХ). Благодаря выпуску обширного лабора стационарных фаз, созданию высокочувствительных универсальных и специфических селективных детекторов [163], легкости варьирования условий проведения процесса эти методы позволяют четко разделять соединения различной химической природы. При этом используются самые малые различия в их свойствах, даже обусловленные оптической изомерией [164, 165]. Подбирая соответствующие стационарные фазы в газохроматографических колонках, можно реализовать любые принципы удерживания (сорбции). [c.21]

    Развитие техники современных физико-химических методов разделения и анализа сложных смессш позволило перейти от определения элементного состава нефтей и выделения отдельных фракций к исследованиям группового, а в последнее время и индивидуального состава нефтяных фракц1Й. Стало возможным изучение индивидуального состава газа и бензиновых фракций (до Сю), проведено групповое разделение и частичная идентификация компонентов керосиновых и газойлевых фракций (до jo)- В высокомолекулярных фракциях (от С21 и выще) пока удалось определить лишь отдельные индивидуальные соэдинения групповое разделение этих фракций, включающих различные гибридные структуры, является также достаточно сложной и не вполне решенной задачей. [c.64]

    Несомненный интерес представляет исследование М. А. Капе-люшникова [4], показавшего, что нефть при определенном критическом давлении можно перевести в газовое ( надкритическое ) состояние даже при комнатной температуре. Особенно благоприятные условия для перевода нефти в надкритическое состояние создаются в системах нефть—этилен, нефть—смесь низких гомологов метана (этан, пропан, бутан). Не переходят в критическое газовое состояние лишь наиболее высокомолекулярные компоненты — асфальтены и частично высокомолекулярные смолы. Снижение критического давления в системе нефть—газы или введение в эту систему некоторого количества метана сопровождается выпадением наиболее высокомолекулярной части нефти. В этих условиях фракционирование нефти идет в обратном, по сравнению с обычной перегонкой, направлении сначала выпадает наиболее тяжелая часть — асфальтены, затем смолы, высокомолекулярные углеводороды п т. д. Так как легкая часть нефтп вызывает резкое повышение значений критического давления, то лучше подвергать холодной перегонке — ретроградной конденсации — нефть, освобожденную от легколетучих компонентов. Эффективность метода ретроградной конденсации иллюстрируется данными, приведенными в табл. 78 [5]. При разделении отбензиненной ромашкинской нефти, содержащей 14,4% смол и 4,1% асфа.чьтенов, при 100° было получено 75% дистиллята, совсем не содержащего асфальтенов, и лишь 3,5% смол. 75% всех асфальтенов, содержащихся в отбензиненной нефти, было сконцентрировано в первых двух фракциях, составляющих 15% от исходного сырья. В настоящее [c.245]

    Широкие возможности метода непрерывной адсорбции позволяют хгспользовать ого в тех случаях, когда применение других способов разделения практически не целесообразно, а также и вместо существующих промышленных способов. В первую очередь это относится к применению нроцесса для извлечения целевых компонентов из газов, содержащих их в небольших количествах, как, наиример, извлечение углеводородов и Сз из отходящих газов производства СК (метановодородная фракция, неабсорбировапный газ, образующийся при производстве дивинила), из коксового и сланцевого газов разделение так называемого попутного газа добычи и стабилизации нефти и др. [c.218]

    Н. Е. Подклетновым был предложен метод ускоренного микроанализа нефти [107]. Согласно этому методу анализ бензино-лигроиновой фракции осуществляется с применением газо-жидкостной хроматографии. Во фракции, выкипающей в интервале температур 50—200° С, Н. Е. Подклетнову с сотрудниками удалось определить 170 индивидуальных углеводородов и количественно охарактеризовать около 60 групп с узким углеводородным составом. Температурные пределы узких фракций (50—100°, 100—150°, 150—175°, 175—200° С) были выбраны в результате специального исследования, проведенного с контролем состава выделенных фракций с помощью спектра комбинационного рассеяния. Для ректификации малых количеств исходной пробы нефти использовалась микроректификационная колонка. Количественное разделение 1—2 мл анализированной фракции на метано-нафтеновую и ароматическую части проводилось методом адсорбционной жидкостной хроматографии. Разделение на индивидуальные компоненты полученных групп углеводородов проводилось на колонках (/=16 м, с1 = 4 мм), заполненных огнеупорным кирпичом, на который в качестве неподвижной жидкой фазы нанесен (20% вес.) полиметилфенилсилоксан (ПФМС-4). Отработка оптимальных режимов разделения была проведена на модельных смесях. На рис. 23 приведена хроматограмма разделения нефти месторождения Восточное Эхаби. [c.79]

    Гиперсорбция. В нефтяной промышленности для разделения газов пиролиза нефти находит применение метод непрерывной адсорбции в движущемся слое адсорбента. Этот метод, названный гиперсорбциен. отличается более высокой производительно стыо установок по сравнению с установка ми периодического действия, работающими с неподвижным слоем адсорбента, а также более высокой степенью разделения газовых смесей на составляющие их компоненты. [c.534]


Смотреть страницы где упоминается термин Методы разделения компонентов нефти и газа: [c.118]    [c.118]    [c.115]    [c.212]    [c.65]   
Смотреть главы в:

Химия нефти и газа -> Методы разделения компонентов нефти и газа




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Методы разделения компонентов нефти

Нефть разделение компонентов

Разделение газа на компоненты

Разделение газов

Разделение компонентов



© 2025 chem21.info Реклама на сайте