Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Компоненты битумов смолы

    Зависимость температуры размягчения от состава битума такова она тем выше, чем больше отношение содержания асфальтенов к содержанию жидких компонентов битума - смол и масел. Поэтому в практике метод КиШ часто применяют для определения степени окисления битумного сырья, т.е. степени перехода масел и смол в асфальтены. [c.17]


    Парафин низкотемпературной гидрогенизации. При каталитической гидрогенизации смолы швелевания бурых углей на стационарном сульфидном никель-вольфрамовом катализаторе (27% сульфида вольфрама + 3% сульфида никеля на активированной окиси алюминия) под давлением водорода 300 ат происходит деструктивная гидрогенизация кислородных и сернистых компонентов смолы. При этом битумы, смолы и другие высокомолекулярные сернистые и кислородные соединения превращаются в углеводороды. Эти реакции необходимо проводить при более мягких температурных условиях, в противном случае возможно, что в результате термического разложения асфальтены и смолы будут отлагаться на катализаторе еще до того, как произойдет их восстановительное разложение. Это создает опасность необратимого загрязнения катализатора и постепенного падения его активности. [c.50]

    Структура второго типа представляет собой стабилизованную разбавленную суспензию асфальтенов в сильно структурированной смолами дисперсионной среде. Подобная структура характерна для битумов, содержащих менее 18% асфальтенов, более 36% смол и менее 48% углеводородов. Доля асфальтенов общей сумме смолисто-асфальтеновых веществ составляет менее 0,34, а по отношению к сумме углеводородов и смол — менее 0,22. При промежуточном групповом химическом составе битума строение последнего характеризуется наличием элементов структуры обоих типов. Отдельные компоненты битумов одного и того же типа, но полученных из разных нефтей, могут различаться химическим составом. Это оказывает некоторое дополнительное влияние на структуры. Так, в случае битумов, полученных из крекинг-остатков и имеющих лиофобные плохо набухающие асфальтены, для создания коагуляционного каркаса требуется большее число структурообразующих частиц в единице объема и, следовательно, более высокое содержание асфальтенов. [c.15]

    Битумы обладают оптимальным комплексом свойств только в том случае, когда сочетание составляющих компонентов — асфальтенов, смол и масел — и их природа соответствуют вполне определенным условиям. Поэтому выбранная технология для получения битумов должна обеспечивать необходимые измене, ния компонентного состава сырья при его переработке в битум. [c.99]

    Экстракты фенольной очистки характеризуются высоким содержанием полициклических ароматических углеводородов и смол, причем последние богаты серой, кислородом и азотом, особенно экстракты, полученные при двухступенчатом процессе. На базе экстрактов как первой, так и второй ступеней, получают мас-ла-пластификаторы для шинных резин и резино-технических изделий (ПН-6, ПН-30, МИНХ-1) [58, 59]. Остаточные экстракты с большим содержанием смол используют как компоненты битумов и при производстве трансмиссионных масел, а дистиллятные — для получения теплоносителей [56, с. 89—95]. Сульфированием и нитрованием экстрактов могут быть получены присадки, улучшающие моющие и защитные свойства масел. [c.103]


    Уравнение (5) описывает различные процессы, например, адгезию полимерных клеев, битумов, смол на волокнах и минералах. Из термодинамической модели следует, что во всех случаях зависимости адгезии от концентрации компонентов в растворе нелинейные и почти линейны зависимости адгезии от температуры. [c.112]

    Основные положения доклада сформулированы автором следующим образом. Асфальтены и нефтяные смолы суть две группы, составляющие коллоидно-дисперсную часть сырой нефти. Эти две группы веществ различаются между собой по составу, строению-размерам частиц и свойствам. При переработке нефти коллоидные частицы концентрируются в остатках от перегонки, не претерпевая существенных изменений в структуре. Асфальтены содержат преобладающее количество содержащихся в нефти неуглеводород -ных компонентов. Нефтяные смолы построены почти исключительно из углеводородов. Рассматривается состав смол и асфальтенов и причины их сильно различающихся реологических свойств, а так же влияние поверхностно-активных свойств веществ, содержащихся в асфальтенах, на смачивающие свойства битумов. Нельзя не согласиться с утверждением Г. Неймана, что многие свойства асфальтенов, прежде всего поверхностно-активные, часто довольно сильно меняются при отсутствии существенных изменений в химическом составе и структуре последних, что изменения этих свойств могут быть обусловлены наличием в асфальтенах примесей свободных нафтеновых кислот и редкоземельных солей нафтеновых кислот. Справедливо и утверждение о гетерогенности асфальтенов и нефтяных смол, а также о их слабой изученности. Однако два основных вывода доклада Г. Неймана о чисто углеводородном составе нефтяных смол и об отсутствии изменений в строении смол и асфальтенов при высокотемпературной переработке нефти, нахо- [c.41]

    Образование новых молекул в результате сочетания двух или большего числа молекул углеводородов и образование ароматических структур в результате дегидрирования способствуют появлению в битуме более жестких структур — асфальтенов. Эти новые полициклические ароматические компоненты изменяют первоначальную коллоидную структуру битума. Смолы и в меньшей степени масла превращаются при окислении сернистым ангидридом в асфальтены. Величина отношения асфальтены/смолы возрастает, и асфальтены коагулируют — битум переходит из золя в гель. Сера за счет еще невыясненного механизма во время реакции внедряется в углеводородные структуры, что важно для повышения твердости. После завершения реакции кислород сернистого ангидрида в окисленном продукте не обнаруживается он удаляется в виде реакционной воды. Это, пожалуй, самое убедительное свидетельство того, что термин окисление здесь неуместен, а скорее — дегидроконденсация насыщенной и полу-насыщенной (нафтено-ароматической) частей сырья. [c.137]

    В соответствии с принятыми ныне представлениями, битумы включают три основных компонента углеводороды, смолы и асфальтены. Каждый из трех названных выше компонентов битума [c.196]

    Увеличение- Кр.с масляного компонента битума и уменьшение отношения асфальтены смолы ослабляют прочность структуры битумной системы. Это происходит в результате большего диспергирования асфальтеновых мицелл в масляных фракциях, обладающих большей растворяющей способностью. В результате битум переходит в состояние золя и теряет вязкостно-эластичные свойства, что приводит к понижению температуры размягчения и пенетрации при 0°С, увеличению растяжимости и уменьшению индекса пенетрации, т. е. к увеличению крутизны вязкостно-температурной кривой, повышению температуры хрупкости (значение последней проходит через минимум). [c.40]

    Эти процессы приводят к разделению компонентов битума по молекулярному весу, т. е. к более глубокому прониканию масел, а затем смол в микропоры минерального материала и соответственно к увеличению концентрации асфальтенов в пленке битума, покрывающей поверхность минерального материала. Это, в свою очередь, сопровождается уменьщением эластичных свойств битумной пленки. [c.12]

    Наряду с групповым углеводородным составом для характеристики химического состава битума необходимо знание свойств отдельных структурообразующих компонентов-асфальтенов, смол и углеводородов. [c.57]

    В табл. 7 даны характеристики компонентов битумов, полученных из туймазинской нефти с помощью различной технологии (см. табл. 5). Средний молекулярный вес углеводородов и смол зависит [c.57]

    Рассматривая данные адсорбционно-хроматографического анализа (см. табл. 5, 6), можно, однако, видеть, что по суммарному содержанию основных компонентов (асфальтенов, смол и углеводородов) все битумы независимо от вида нефти, нефтяного сырья и технологии получения можно разделить на три различных типа. [c.63]


    Эти методы можно отнести к двум категориям. Методы первой категории связаны с оценкой химического состава битума и точным количественным определением содержания асфальтенов, смол, углеводородного состава, твердых парафинов, функциональных групп, а также химическими характеристиками отдельных компонентов битума. [c.184]

    Предусмотренные ГОСТом товарные показатели битума являются косвенной характеристикой его коллоидной структуры. Известно,, что битумы представляют собой двухфазную коллоидную систему, в которой дисперсионной средой являются мальтены (масла и смолы) и дисперсной фазой— асфальтены. Поэтому, в первую очередь, необходимо было изучить эти два структурообразующих компонента битумов. С этой целью проведено разделение на асфальтены и мальтены, серии образцов [c.59]

    В работе [79] приведены зависимости Ср =/(7) растворимости асфальтенов в остальных компонентах битумов (мальтены + смолы) и масляной части битумов с различным содержанием парафино-нафтеновых углеводородов. Растворимость асфальтенов при повьппении температуры увеличивается. Расчеты показали, что тепловой эффект растворения асфальтенов в дисперсионной среде, где концентрация парафино-нафтеновых компонентов была равна 8 %, составил +4,1 кДж/моль, а при их концентрации 35 % — +3,1 кДж/моль. Таким образом, стабильность дисперсной системы понижается [c.763]

    Перестройка структуры из одного стабильного состояния в другое происходит скачкообразно, чему предшествует ее распад. Образование в среде окисляемого вещества ассоциатов сопровождается существенным изменением механизма термоокислительных превращений. Это проявляется в замедлении скорости расхода масел, накоплении асфальтенов и медленном повышении температуры размягчения битума (рис. 12.46, 12.47). Для П этапа также характерно протекание окислительных превращений при почти неизменной концентрации смол. Отмеченные особенности окислительных превращений связаны с изменением направления атаки кислорода. В границах второго этапа кислород преимущественно расходуется в реакциях с компонентами, находящимися в дисперсионной среде. Это наименее полярные компоненты масел, смол и асфальтенов в количестве, соответствующем величинам их равновесных концентраций для конкретных условий. Их взаимодействие с кислородом сопровождается деструкцией по алифатическим фрагментам и межфазным перераспределением образующихся веществ. Правомерность сделанного вывода подтверждается данными, приведенными на рис. 12.48. Обращает внимание идентичность развития термических и термоокислительных процессов превращения нефтяных остатков (рис. 12.32). [c.796]

    Изменение основных качественных показателей битумов по мере утяжеления сырья согласуется с изменением соотношения их составляющих компонентов — асфальтенов, смол и масел. Так, от- [c.115]

    Битумы, как и их компоненты — масла, смолы и асфальтены,— химически активны и вступают во взаимодействие с кислородом (воздухом), серой, селеном и теллуром, причем характер взаимодействия аналогичен выделя зтся соответствующий гидрид (Н2О, НзЗ, НаЗе, НаТе) и образуются продукты уплотнения — асфальтены. [c.218]

    Пфейффер [4] наиболее близко подошел к рассмотрению зависимости физико-механических свойств битумов как коллоидных систем от количественного соотношения основных компонентов (асфальтенов, смол, углеводородов) и их химических особенностей. Он сделал, попытку выяснить влияние каждого нз этих компонентов коллоидной системы на ее реологические свойства. Он указал на важное значение атомарногсГсоотношення С Н как ноказателя степени ароматичности отдельных компонентов. Подчеркивая ароматическую природу асфальтенов и, как следствие этого, большую или меньшую склонность их к поляризации, Пфейффер делает заключение о возможности управления процессами гелеобразования таких коллоидных систем, исиоль-ь я сьлиыность асфальгеноБ к поляризации. Присутствующие в молекулах асфальтенов кислород-, серу- и азотсодержащие поляр- [c.495]

    И легких условиях. ПИНС Мовитин образует на защищаемой поверхности твердую абразивостойкую пленку и широко применяется для защиты днища автомобилей. Защитный состав наносят кистью или пневматическим распылением. Основные компоненты битум, нефтеполимерная смола, церезин, сульфонат кальция, окисленный петролатум, уайт-спирит. [c.393]

    По мере перехода от углеводородов к смолам и в дальнейшем к асфальтенам и карбоидам происходит обогащение вещества углеродом, увеличивается молекулярный вес и уменьшается растворимость. Например, карбены растворяются только в сероуглероде, тогда как карбоиды ни в чем нерастворимы. Каждый из компонентов, входящих в состав нефтяных битумов, оказывает влияние на их технические свойства. Твердые парафины уменьшают адгезионную способность (прилипаемость) битума. Смолы придают битуму эластичность и цементирующую способность. Масла (углеводороды) улучшают растворимость и понижают способность битума к высыханию. Асфальтены сообщают битуму твердость и высокоплавкость. Наличие обогащенных углеродом карбенов снижает число растворителей битума. Повышенное содержание карбенов и особенно кар-боидов ведет к потере таких технических качеств битума, как эластичность, пластичность, прилипаемость, тягучесть. [c.258]

    Асфальтены [221] рассматриваются как продукт уплотнения смол. В свободном виде они представляют собой твердые неплавящиеся хрупкие вещества черного или бурого цвета. В отличие от других компонентов битумов они нерастворимы в насыщенных углеводородах нормального строения (Сз—С7), а также в смещанных полярных растворителях — спирто-эфирных смесях и низкокипящих спиртах, в нефтяных газах (метане, этане, пропане и др.), но легко растворимы в жидкостях с высоким поверхностным натяжением более 24 дин1см (24 мн/м) — бензоле и его гомологах, сероуглероде, хлороформе и четыреххлористом углероде. [c.12]

    Существует связь между строением вещества (в частности, битума) и склонностью его к люминесценции. Люминесцентный анализ основан на изменении электронного состояния молекул иод действием ультрафиолетового излучения. На практике люминесцентный анализ основан, как правило, на наблюдениях флуоресценции растворов. Изменение цветов флуоресценции позволяет делить сложные смеси высокомолекулярных, углеводородов с их гетеропроизводньши на более узкие фракции. Применяя флуоресценцию, можно определять групповой состав битума. Полученные фракции отбирают по изменению окраски в следующем порядке фиолетовый — парафиновые и нафтеновые (/г °=1,49) голубой — моно-циклические ароматические соединения (га =1,49 — 1,54) желтый — бициклические ароматические соединения ( д = 1,54— 1,58) коричневый или оранжевый — смолы. Если требуется только отделить углеводородные компоненты битума от смол, то фракции флуоресценции от фиолетовой до желтой собирают-вместе. [c.26]

    Содержание и химический состав каждого компонента битума влияет на его физико-химические свойства. При изменении содержания одного из компонентов мальтенов в четырехкомпонентной системе (асфальтены, смолы, ароматические и насыщенные соединения), при содержании асфальтенов 25% и при постоянном соотношении двух других компонентов в мальтенах свойства битумов изменяются следующим образом смолы уменьшают, насыщенные соединения увеличивают, а ароматические соединения не оказывают влияния на пенетра-ию смолы увеличивают, насыщенные соединения уменьшают, а ароматические соединения не оказывают влияния на температуру размягчения битумов смолы увеличивают вязкость и немного изменяют зависимость вязкости от температуры. Насыщенные соединения уменьшают вязкость и изменяют температурную зависимость, ароматические соединения не оказывают влияния ни на вязкость, ни на зависимость вязкости от температуры. [c.38]

    Интересно отметить, что смолы, выделенные из битумов различной глубины окисления сырья одинаковой природы, обладают практически одинаковой вязкостью [425]. Удаление парафинов из парафиновых и высокопарафиновых битумов почти не изменяет вязкости смол, которая остается значительно меньше вязкости смол из малопарафинистых битумов. Это объясняется тем, что в состав битумов из парафиновых нефтей помимо парафиновых входят нафтеновые и ароматические структурные элементы с алифатическими боковыми цепями. Поэтому выделение парафина из битума почти не изменяет его химической структуры, а следовательно, и свойств. В связи с этим необходимо знать характер соединений, входящих в состав всех компонентов битума. Содержание парафина в битуме служит лишь косвенным показателем его алифатичности. [c.41]

    Наиболее широкое распространение получил классический метод определения состава битума, предложенный Мар куссоном. В настоящее время он применяется в несколько видоизмененном и упрощенном виде. По этому методу асфальтены из битума осаждаются пет-ролейным эфиром, а для разделения масел и смол используется их различная способность сорбироваться силикагелем. Разделение проводится в аппарате Сокслета при экстракции горячим петролейным эфпром и спирто-бензольной смесью. Метод имеет ряд недостатков, относящихся в первую очередь к длительности проведения анализа и высокой температуре экстрагирования. Под воздействием кислорода воздуха и высокой температуры в компонентах битума могут произойти необратимые изменения (окисление, оксиполиконденсация, связанная с новообразованием асфальтенов и смол), что приводит к расхождению результатов анализа. [c.55]

    В табл. 8 даны средний молекулярный вес, функциональные группы и элементарный состав компонентов битумов разных нефтей. Из приведенных в табл. 8 данных видно, что средний молекулярный вес углеводородов битумов анастасьсвской, ильской и туйлгазии-ской нефтей ниже, чем углеводородов других нефтей. Это различие, однако, почти не сказывается иа молекулярных весах смол и асфальтенов. Высокие кислотные числа имеют компоненты битумов из ильской и бузовнинской нефтей. Кислотные и йодные числа асфальтенов всех битумов сравнительно велики, что свидетельствует [c.60]

    Следует отметить, что отдельные компоненты битумов одного и того же типа могут различаться по химическому составу. Так, несмотря на близ1кий элементарный состав и средний молекулярный вес углеводородов и смол разных нефтей (что позволяет отнести эти компоненты к одним и тем же гомологическим рядам), асфальтены битумов могут иметь различные характеристики. Для асфальтенов битумов из крекинг-остатков характерна высокая степень ароматичности (отношение С Н) и низкий молекулярный вес, свидетельствующие о наличии высоко конденсированных ароматических ядер и малого количества боковых цепей. Это указывает на лио-фобность асфальтенов по отношению к углеводородам и смолам. В то же время асфальтены битумов из гудронов прямой перегонки достаточно лиофильны. Асфальтены глубоко переокислениых битумов имеют более высокий молекулярный вес, чем асфальтены битумов из гудронов прямой перегонки. [c.64]

    Следовательно, введение в битум поверхностно-активпых добавок, почти не изменяя содержания тяжелых составляющих битума (асфальтенов, спиртобензольных смол), вызывает перераспределение в углеводородных компонентах битума и легких смолах, что обнаруживается по у гяжеле1П1ю углеводородов и по увеличению содержания легких смол при одновременном повышении содержания парафино-нафтеновых углеводородов. [c.215]

    Изменение основных качественных показателей битумов по мере утяжеления сырья согласуется с изменением соотношения их составляюших компонентов — асфальтенов, смол и масел. Так, отношение снижается от 1,23 до 0,5, а отношение увели-с м  [c.115]

    Сланцевые смолы и их фракции можно использовать в качестве компонентов моторных топлив. Кроме топливного использования, сланцевые смолы применяют для производства масел, употребляющихся при пропитке древесины. Фенольные фракции при их выделении используются в синтезе модификаторов резины. Из сланцевой смолы получают также "Кукерсоль", используемый в качестве компонента битумо-латексно-кукерситовых мастик, применяемых в строительстве для гидроизоляции. Смола используется также в производстве препарата для борьбы с эрозией почв и закрепления подвижных песков — "Нерозина". [c.226]

    Хорошо известно, что соотношение составляющих битум компонентов зсфальтеноз, смол и масел, а также свойства этих компонентод, оказывают решающёе влияние на совокупность свойств битумов (1-7). Вместе с тем имеющиеся данные , к сожалению, не всегда носят достаточно подробный для ЩШг тических целей характер, не всегда позволяют судить о ире дельных возможностях регулирования свойств битумов аа счет изменения того ил 1 иного фактора. [c.45]

    Экспериментальные данные, представлены на графике (рис. 8), выражающем зависимость относительной коллоидной стабильности битумов (мл н-гептана/г мальтенов битума) ог содержания в битуме смол и величины КРС масляного компонента. Видно, что как увеличение доли смол, так и увеличение КРС масел приводят к заметному улучшению стабильности, коллоидной структуры битума. Это можно объяснить приближением коллоидной структуры изученных битумов к структуре битумов типа золь при увеличении степени ароматичности к общего количества смол. Такое явление подтверждается отмеченным выше сближением величин вязкостей неразрушенной н разрушенной структур битумов при увеличедщи в последних доли смол и КРС масла (рис. 2). Таким же образом, объясняется и снижение коллоидной стабильности битумов, наблюдающееся при увеличении отношения асфальтены смолы. [c.52]

    Таким образом, в процессе непрерывного окисления, вследствие интенсивного перехода смол в асфальтены, битумы обогащаются маслами и асфальтенами и обедняются смолами. Полученные данные по групповому составу и свойствам компонентов битумов позволяют объяснить влияние способа окисления на их товарные свойства. Например, общепризнано, что температура размягчения битумов зависит в основном от содержания асфальтенов, а морозостойкость и эластичность — от содержания и состава мальтенов. На основании проведенных нами исследований становится очевидным, что свойства битумов двух процессов обеспечиваются не только концентрацией основных макроком-лонентов, но и их качественным отличием. [c.63]

    Термоокислительные превращения в границах второго этапа протекают при почти неизменной концентрации смол, медленном уменьшении концентрации масел и небольшом приросте асфальтенов. Замедляется и скорость повышения температуры размягчения битума. Такой характер термоокислительных превращений связан с интенсивным протекажем реакций окислительной деструкции, в результате чего происходит изменение состава компонентов битума. [c.785]

    Аналогичные явления характерны не только для компонентов битумов, они также наблюдаются в бензольных растворах гудрона при добавлении асфальтенов (холодная модель процесса получения битума). На рис. 12.41 показано изменение диэлектрической проницаемости и величины тангенса угла диэлектрических потерь при последовательном добавлении асфальтенов в бензольный раствор мальтенов (смолы + масла). В этом опыте мальтены были выделены из гудрона Ромашкинской нефти. Начальная концентрация мальтенов в растворе была 5,6 моль/м . При последовательной добавке в раствор асфальтенов наблюдается понижение его диэлектрической проницаемости и увеличение тангенса угла диэлектрических потерь. При определении дипольных моментов групповых компонентов гудронов и битумов разной степени окисления наблюдалась обратная картина. Из этих данных следует, что совместные комплексы из смол и асфальтенов более прочные, чем ассоциаты, образованные отдельно из асфальтенов или смол. По этой причине при добавлении асфальтенов в раствор мальтенов, происходит распад ассоциатов смол и асфальтенов и вместо них в растворе появляются меньшие по величине, но более прочные частицы. Наиболее прочные комплексы образуются лишь при некотором определенном мольном соотношении между асфальтенами и смолами. [c.790]

    Компоненты битума под воздействием атмосферных и агрессивных факторов претерпевают физико-химические превращения что ведет к изменению его структуры и количества составляющих - масел, смол и асфальтенов. Большинство советских и зарубежных исследователей главным эксплуатационной поназа-твяем устойчивости битумов считают воздействие повышенных температур. Одни /3/ характеризовали устойчивость битумов к старению изменением температуры размягчения после выдержки в гонком слое при 1бО°С в течение 10 ч. Другие Д/ утвар-адали, что воздействие кислорода воздуха на битум при температуре 1бЗ°С в течение 5 ч эквивалентно его изменению при работе в покрытии на протяжении одного года. [c.167]


Смотреть страницы где упоминается термин Компоненты битумов смолы: [c.58]    [c.26]    [c.13]    [c.136]    [c.348]    [c.25]    [c.60]    [c.59]    [c.77]    [c.48]    [c.757]   
Битумные материалы (1974) -- [ c.7 , c.12 , c.13 , c.15 , c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Компоненты битумов

Смолы компоненты битумо

Смолы компоненты битумо



© 2025 chem21.info Реклама на сайте