Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбены растворах

    Время жизни образовавшегося дихлоркарбена всегда крайне мало. В отсутствие реагирующего олефина он выдыхается . Например, хорошо изучены многостадийные и сложные реак-ци с дихлоркарбеном, полученным из трихлорацетата натрия [614]. Однако в случае реакции Макоши весь дихлоркарбен не образуется одновременно. Побочные реакции и гидролиз идут медленно, и система остается реакционноспособной в течение длительного времени даже в отсутствие хорошего акцептора карбена. Таким образом, находящийся в равновесии с исходным реагентом ССЬ может ждать субстрат, и поэтому становится возможной реакция даже с очень дезактивированными субстратами. На практике применяют 50%-ный (концентрированный) водный раствор гидроксида натрия в присутствии ТЭБА как катализатора и хлороформа в качестве растворителя. Общие тенденции к образованию, присоединению и гидролизу ССЬ приведены в табл. 3.18. В отсутствие олефина медленный гидролиз хлороформа ускоряется примерно в 6 раз под действием ТЭБА. Добавление олефина приводит к повышению расхода хлороформа, величина ускорения зависит от природы олефина. Гораздо большее значение имеет то, что соотношение скоростей присоединения карбена и гидролиза хлороформа зависит от нуклеофильности олефина и может изменяться в очень широких пределах [384]. Поэтому малореакционноспособные субстраты следует перемешивать с большим избытком основания и хлороформа длительное время. Из данных, приведенных в табл. 3.18, видно, что условий, оптимальных для всех олефинов, не существует. Тем не менее была проделана большая и успешная работа по оптимизации условий реакции [c.291]


    Химические способы обогащения основаны на применении реагентов, которые избирательно растворяют одно из веществ, составляющих смесь, или образуют с одним из веществ соединения, легко отделяемые от других при плавлении, испарении, осаждении из раствора и т. п. К операциям химического обогащения относят также обжиг минералов для разложения карбо- [c.17]

    В сырых нефтях карбены и карбоиды практически отсутствуют. Однако известно, что содержание карбенов в некоторых итальянских нефтях достигает 1,0%. Карбены образуются при окислении асфальтенов. Карбены растворяются в пиридине и сероуглероде, а карбоиды практически ни в чем не растворимы. [c.106]

    Карбены и карбоиды—твердые вещества. Они встречаются только в сырой нефти и в остатке от перегонки, а также в крекинг-мазутах и асфальтах. Карбены растворяются только в сероуглероде, карбоиды. ни в чем не растворимы. [c.201]

    Карбены I карбоиды являются продуктами уплотнения асфальтенов, имеют высокий молекулярный вес, встречаются в высокомолекулярных продуктах окисления (асфальтах) и термического преобразования нефтепродуктов (крекинг-остатках). По внешнему виду карбены и карбоиды—черные хрупкие порошки. Карбены растворяются только в сероуглероде и пиридине карбоиды не растворяются ни в чем. Связь между нефтяными углеводородами и отдельны.ми группами асфальто-смолистых соединений можно представить следующей схемой  [c.21]

    В отстойнике 19 спиртовой раствор депарафината отстаивают от комплекса, который затем промывают промежуточной фракцией. Промытый комплекс из нижней секции отстойника 19 насосом 6 направляют в подогреватель 21, откуда продукты разложения комплекса — спиртовой раствор парафина и карб-амидный раствор — поступают в отстойник 22. Карбамидный раствор из отстойника 22 перетекает в сборник 23, а спиртовой раствор парафинов поступает на отмывку спирта. [c.89]

    Продуктами уплотнения асфальтенов являются карбены и затем карбоиды. Карбены не растворяются в бензоле и лишь частично растворяются в пиридине и сероуглероде. Карбоиды не растворяются в каких-либо органических или минеральных растворителях. Элементарный состав одного из образцов карбоидов примерно следующий (в вес. %) С — 74,2 И — 5,2 8 — 8,3 N — 1,1 О — 10,8 и зольных компонентов — 0,4. [c.33]

    Уолл вычислил скорости абсорбции и десорбции СОз карбо-нат-бикарбонатными растворами при различных температурах. [c.66]

    Сопоставление элементного состава асфальтенов и смол различных нефтей показывает, что асфальтены богаче смол углеродом, серой, кислородом и азотом и содержат меньше водорода. Отношение углерода к водороду в смолах составляет примерно 8 1, а в асфальтенах 11 1 и более [19]. Сумма гетероатомов (S, N и О) в циклах у асфальтенов почти всегда выше, чем у смол. Хотя асфальтены более устойчивы, чем смолы, тем не менее в процессе хранения при доступе воздуха на свету или при нагревании они переходят в еще более сложную модификацию, не растворимую в растворителях, характерных для асфальтенов, и отвечающую карбенам и карбоидам. При действии на асфальтены (в растворе хлороформа) концентрированной серной кислоты наблюдается также частичный переход их в карбены и карбоиды. [c.33]


    В нативных ТНО карбены и карбоиды, как правило, отсутствуют. Они появляются лишь в нефтяных остатках термодеструктивных процессов. Считается, что карбены - линейные полимеры асфальтено-вых молекул молекулярной массой 100 - 185 тыс., растворимые только в сероуглероде и хинолине и нерастворимые в других растворителях. Карбоиды являются сшитым трехмерным полимером (кристаллитом), вследствие чего они не обладают способностью растворяться ни в одном из известных органических растворителей. Карбены и карбоиды вследствие полной нерастворимости в углеводородных растворителях являются компонентами дисперсной фазы ТНО деструктивного происхождения при любых параметрах состояния данных дисперсных систем. Содержание карбенов ( з-фракции) в электродных связующих и пропитывающих пеках составляет не менее 25% (мае.). [c.57]

    Контакт без перемешивания смеси углеводородов (нефтепродукта), в которой содержится активатор, с кристаллами карбамида или контакт без перемешивания двух фаз — углеводородной и водного раствора карбамида — сам по себе еще пе может привести к образованию комплекса. В нервом случае отсутствуют условия, необходимые для создания контакта молекул карбамида, активатора и к-парафинов, в частности, вследствие низкой растворимости карбамида в углеводородах, относительно низкой концентрации непосредственно у поверхности раздела твердой и жидкой фаз молекул активатора, а также адсорбции на поверхности карб- [c.70]

    Воды в реакционной среде быть не должно, так как М,Ы -карбо-нилдиимидазол гидролизуется даже во влажном воздухе (с образованием двуокиси углерода и имидазола) . Реакция поликонденсации проводится в инертных растворителях (тетрагидрофуран, ме-тилеихлорид) . Образующийся имидазол по окончании реакции удаляют из раствора поликарбоната экстракцией соляной кислотой и водой или другим способом, так как его присутствие даже в небольших количествах приводит к потемнению и разложению поликарбоната в процессе переработки. Реакции ди-(4-оксифенил)-алка-нов с Ы,М -карбонилдиимидазолом в расплаве приводят к получению окрашенных низкомолекулярных поликарбонатов вследствие разложения бис-фенолов и поликарбонатов имидазолом > мв-мо В настоящее время этот способ получения поликарбонатов промышленного применения не имеет. [c.46]

    Карбоиды не растворимы ни в каких растворителях, карбены же растворяются только в сероуглероде. [c.461]

    Нейтральный раствор органической части в бензоле или хлороформе, полученный после обработки раствора гудрона паром, водой или раствором сульфата, фильтруют через бумажный фильтр, который промывают несколько раз бензолом (хлороформом). На фильтре получают составные части гудрона, не растворимые в бензоле, т. е. карбены, карбоиды и механические примеси. Колбу с фильтром помещают на водяную баню, отгоняют растворитель и доводят до постоянного веса в термостате с температурой 120°. Полученная органическая часть состоит из углеводородов нейтральных смол и асфальтенов, а также из органических кислот, не растворимых в воде и растворе сульфата натрия. [c.793]

    При низких температурах нефтяные системы могут образовывать обратимые лиофобные золи и гели, если дисперсионной средой являются углеводороды, по отношению к которым твердая фаза нефтяных систем является лиофобной. При средних температурах равновесие может быть сдвинуто в сторону образования истинных высокомолекулярных растворов. Продолжительность периода, когда система находится в молекулярном состоянии, зависит от способности нефтяных систем к образованию новой дисперсной фазы. С повышением температуры системы в результате поликонденсационных процессов образуются карбены и карбоиды — твердые вещества, малорастворимые или нерастворимые ни в чем. Такие нефтяные системы являются типичными необратимыми коллоидными системами. [c.36]

    От соотношения количества нафтеновых структур, соединительных цепей и функциональных групп зависит растворимость асфальто-смолистых веществ в растворителях. При деструктивных процессах в результате отщепления цепей алифатического строения и функциональных групп асфальто-смолистые вещества становятся более плотными и с трудом растворяются в бензоле, сероуглероде (карбены) или вообще не растворяются (карбоиды) ни в одном из растворителей. Если же в структуру компонентов нефтяных остатков ввести (напрнмер, гидрированием) добавочное количество атомов водорода, то растворимость асфальто-смолисты.х веществ повышается. [c.51]

    По мере перехода от углеводородов к смолам и в дальнейшем к асфальтенам и карбоидам происходит обогащение вещества углеродом, увеличивается молекулярный вес и уменьшается растворимость. Например, карбены растворяются только в сероуглероде, тогда как карбоиды ни в чем нерастворимы. Каждый из компонентов, входящих в состав нефтяных битумов, оказывает влияние на их технические свойства. Твердые парафины уменьшают адгезионную способность (прилипаемость) битума. Смолы придают битуму эластичность и цементирующую способность. Масла (углеводороды) улучшают растворимость и понижают способность битума к высыханию. Асфальтены сообщают битуму твердость и высокоплавкость. Наличие обогащенных углеродом карбенов снижает число растворителей битума. Повышенное содержание карбенов и особенно кар-боидов ведет к потере таких технических качеств битума, как эластичность, пластичность, прилипаемость, тягучесть. [c.258]


    Асфальто-смолистые веш ества карбены представляют собой соединения с несколько повышенным содержанием кислорода. Карбоиды и карбены внешне отличаются от асфальтенов лишь более темной окраской. Однако они обладают различной растворимостью карбоиды не растворяются ни в каких растворителях, карбены растворя ются в сероуглероде, асфальтены — во многих ортанических растворителях. [c.38]

    Реакция карбоний-ионной сополимеризации. Как и в реакциях свободно радикальной сополимеризации, лучшим способом получить данные об относительных реакционных способностях мономеров при карбоний-ионной полимеризации является исследование состава сополимеров. Хотя сообщение, что изменение характера активного центра (переход от свободного радикала в ион карбония) может резко изменить состав сополимера, появилось в 1944 г. [99], уравнение сополимеризации не применялось к системам, содержащим ион карбония, до 1948 г., когда было показано [6], что реакция сополимеризации стирола и /г-хлорсти-рола в растворе СС1 , катализируемая ЗпС] , дает постоянные отношения реакционных способностей мономеров (г = 2,2—2,7, = 0,35), это резко отличается от результатов, получаемых при свободно-радикальной реакции (г = 0,74, Гз = 1,025). Впоследствии были опубликованы данные еще для ряда систем, которые подтвердили применимость уравнения во всех случаях, когда сополимер содержит достаточное количество обоих компонентов. На основании этих исследований выяснились два общих свойства реакций карбоний-ионной сополимеризации во-первых, карбо-ний-ионная сополимеризация не имеет тенденции к чередованию или же эта тенденция проявляется в незначительпой степени и, во-вторых, реакционные способности могут быть сведены в последовательные ряды с несколько более широкими пределами распространения, чем это наблюдается при реакции свободно-радикальной сополимеризации. Такие ряды показаны в табл. 11. [c.159]

    Эти результаты находятся в соответствии с медленным разложением первого порядка в ион фенилкарбония с последующей реакцией карбо-ний-иона с различными нуклеофильными веществами, присутствующими в растворе (СУШ)  [c.476]

    И, хотя ионы трихлорацетата могут экстрагироваться с помощью четвертичных аммониевых солей из водных растворов в хлороформ, содержащий олефин в качестве акцептора карбе- [c.41]

    Поэтому другие сообщения [623] о некоторой небольшой оптической индукции при присоединении СС12 в присутствии оптически активных аминов Р при К = Е1, РЬ и Н = Ме, Е1 (схема 3.10) были встречены сдержанно. Несмотря на то что Макоша рассмотрел предположения о появлении интермедиата типа О, который представляет собой илид, образованный при взаимодействии карбена с атомом азота, и показал [433], что его образование невозможно, данные этой работы игнорируются в некоторых более поздних исследованиях, и такие структуры все еще используются. [623] для объяснения хода реакции. Для того чтобы твердо установить, возможна ли оптическая индукция подобного типа, была проведена реакция с хлороформом и концентрированным раствором гидроксида натрия в присутствии (5)-(+)-К,К-диметилфенилэтиламина. Перегнанный продукт реакции действительно обладал небольшим оптическим вращением, которое, однако, исчезало при тщательной очистке [843, 1697]. [c.106]

    Декарбоксилирования не происходит, если при реакции в условиях МФК используют концентрированный водный раствор трихлорацетата натрия, хотя (гидратированный) анион экстрагируется. В данном случае основную роль играет количество катализатора. Когда катализатора слишком много, в растворе находится и разлагается за единицу времени относительно большое количество трихлорацетата натрия это ведет к заметному развитию хорошо известных побочных реакций [614] (атака ССЬ или СС1з на трихлорацетат и осмоление), и ССЬ выдыхается . В отличие от метода Макоши в данном случае олефин не влияет на скорость расходования источника карбена [675]. Было изучено [676] также влияние катионов (K+>Na+>Li+) как в присутствии, так и в отсутствие краун-эфиров на декарбоксилирование и присоединение дихлоркарбена. Выводы были аналогичными при быстром де-карбоксилировании выход продукта относительно низок. [c.297]

    Из этих данных видно, что асфальтены богаче, чем смолы, углеродом, серой, кислородом и азотом и содержат меньше водорода. Отношение углерода к водороду в смолах составляет приблизительно 8 1, у асфальтенов 11 1 и выше. Химические свойства асфальтенов изучены очень мало. Хотя асфальтены, очевидно, более устойчивы, чем смолы, однако в процессе длительного хранения при доступе воздуха на свету или при нагревании они переходят в еще более сложную модификацию, не растворимую в растворителях, характерных для асфальтенов, отвечающую карбе-нам или карбоидам. При действии па асфальтены (в растворе [c.72]

    Выполнены опыты по разделению суспензий мела, талька, каолина, окисей алюминия и кремния в водных растворах карб-окснметилцеллюлозы (КМЦ) и гидроксиэтилцеллюлозы (ГЭЦ) на горизонтальной фильтровальной перегородке поверхностью 64 см . [c.56]

    Разработан метод получения нормальных парафиновых углеводородов высокой чистоты при депарафинизации нефтепродуктов спирто-водным раствором карба мида. Высокая четкость гравитационного разделения фаз в разработанном процессе обеспечивает получение из такого сырья, как дизельное топливо ромашкинской нефти, парафинов с содержанием комплексообразующих углеводородов 93—93,5%, в том числе н-алканов (по хроматографическому анализу) 98%, ароматических — около 1%. При этом расход углеводородного растворителя на промывку суспензии комплекса составляет 75—100% (масс.) на исходное топливо, что в несколько раз меньше такового в других схемах карбамидной депарафинизации с рааделением фаз на фильтрах или центрифугах. В работах [32, 89] в том или ином варианте предлагается применять прессование (на лентах, между которыми заключен комплекс-сырец на конических роликах, расположенных ради- [c.247]

    Принципиальная технологическая схема установки карбамидной депарафинизации приведена на рис.2.26. Установка состоит из двух параллельных блоков, каждый производительностью 500 тыс. т/год. Исходное сырье - дизельная фракция, пройдя силикагелевую колонну (на рисунке не показана), гдё освобождается от ингибиторов, поступает в реактор I ступени комшлексооб-разования 3, предварительно смешиваясь с промывочным фильтратом, подаваемым из емкости 7 (дихлорметаном от трехкратной промывки комплекса). Сюда же подают водный раствор карбамида, выпариваемый в колонне -I до 76/Й-ной концентрации. Водный раствор карба лида бte- [c.131]

    Реже используются щелочная или кислотная абсорбция оксидов азота, термическое оксидирование, нейтрализация карб-амидными растворами. При щелочной абсорбции нитрозные газы абсорбируются содой, известковым молоком, гидроксидом натрия, смесью Mg(0H)2 и Mg Os. Щелочная абсорбция оксидов азота целесообразна, когда требуется получение дополнительно нитритов или нитратов или когда,нельзя применить другой метод очистки. [c.214]

    Жидкая пропиленовая фракция, а также свежий синтез-газ под давлением 25—30 МПа и рециркулирующий синтез-газ, сжатый до этого не давления циркуляционным компрессором 1, подогревают соответственно в теплообменниках 2 и 3 за счет тепла горячей реакционной массы. Затем они поступают в реактор 4, куда из карбо-нилообразователи 9 подают раствор карбонилов кобальта в толуоле и тяж( лых остатках от перегонки продуктов. В реакторе 4 при 110—160°С происходит образование альдегидов и побочных веществ, причем выделяющееся тепло отводят водой или кипяшим водным конденсатом (в зависнмости от температуры) с получением иара низкого давления. [c.541]

Рис.2.II. Области стабильное- до ти комплексов н-алканов с карба- ч . МИДОМ в водном растворе Рис.2.II. <a href="/info/224209">Области стабильное</a>- до ти комплексов н-алканов с карба- ч . МИДОМ в водном растворе
    Известно, что на выход парафина влияют главным образом концентрация карбамида в растворе изопропилового спирта и температура комплексообразования. Результаты работы установки 64-1 показали, что целесообразно использовать 40-45 -ннй раствор карбами- [c.107]

    Еще на ранних стадиях изучения асфальтенов было замечено, что при стоянии на свету и доступе Еоздуха асфальтены в результате окисления перестают растворяться в бензоле и хлороформе, так как переходят в более уплотненное состояние — образуют карбены. [c.214]

    Асфальтены — твердые высокоплавкие хрупкие вещества черного цвета, нерастворимые в метановых углеводородах, но растворимые в ароматических углеводородах и других растворителях. Молекулярная масса равна 2000—3000. Если растворы асфальтенов агрсвать или подвергать освещению, то они иретериевагот конденсацию и превращаются в карбены и карбоиды. нерастворимые вещества еще большей молекулярной массы. Молекулы асфальтенов можно рассматривать как продукты конденсации 2—4-х молекул нейтральных смол. [c.106]

    Разделение сырых жирных кислот изо- и нормального строения, полученных окислением парафинов, осуществлено Н. К. Маньковской [306]. Условия разделения 15%-ный раствор карбамида в 96%-ном этаноле и 20%-ный раствор кислот в том ж спирте или в сухом четыреххлористом углероде смепшвали в соотношении 10 1, интенсивно перемешивали 2—3 мин и оставляли кристаллизоваться в течение 2 ч при 20—22° С. Установлено, что в этих условиях низкомолекулярные жирные кислоты нормального строения, содержащие до 12 атомов углерода в молекуле, и все изокислоты не образуют кристаллического комплекса с карба- [c.219]

    Индикаторное титрование. К навеске испытуемого вещества (2—3 г) добавляют 7 мл 0,5 и. раствора солянокислого гндроксиламина (3,475 г ЫНгОН-НгО растворяют в 95 мл 607о-но-ю спирта, нейтрализуют 0,5 н. спиртовым раствором КОН в присутствии 10 капель метилового оранжевого и доливают до 100 мл водой). Смесь кипятят 15 мин на водяной бане с обратным холодильником. Затем охлаждают, добавляют метиловый оранжевый (0,2% метилового оранжевого в 60%-ном спирте) и выделившуюся соляную кислоту оттитровывают 0.5 н. спиртовым раствором КОН. Вычисляют по формуле карбо ильные числа (в мг КОН/г)  [c.160]

    Метод ионного обмена основан на свойстве некоторых твердых тел (ионитов) поглощать из раствора ионы в обмен на эквивалентное количество других ионов того же знака. Иониты подразделяются на катиониты и аниониты. Катиониты содержат подвижные катионы натрия или водорода, а аниониты подвижные ионы гидроксила. В качестве катионитов применяют сульфоугли, алюмосиликаты (пермутит, цеолит и др.), в качестве анионитов искусственные смолы, например карба-мидные. [c.75]

    Абсорбция медно-ам-мвачным ацетон-карбо-натным раствором Отмывка жидким азотом (вымораживание) Фильтрование через бумажный фильтр Каталитическое окисление [c.199]

    Выделение индивидуальных к-нарафинов от 16H34 до Сд5Н,2 из битковской и долинской нефтей проведено Е. Ф. Яценко и Н. И. Черножуковым [180]. В разработанной ими методике основная роль принадлежит комплексообразованию с карбамидом. Методика заключается в следующем. Из отбензиненной нефти удаляли асфальтены и смолы, после чего из нефти выделяли к-иарафины ступенчатой четырехкратной обработкой карбамидом (отношение карбамид сырье составляет на каждой стунени соответственно 1 1 2 1 3 Т 1 4 1) при использовании в качестве активатора метанола, а в качестве разбавителя и промывной жидкости — хлороформа. Для отделения осажденных к-парафинов от других структур, также образующих комплекс с карб-а гидом, каждую фракцию растворяли в хлороформе и вновь обрабатывали карбамидом, повторяя эту операцию несколько раз до достижения постоянной температуры плавления выделенных к-парафинов. Полученные фракции были подвергнуты хроматографическому разделению на угле на 200 узких фракций с установлением показателя преломления, температуры плавле- [c.196]


Смотреть страницы где упоминается термин Карбены растворах: [c.313]    [c.161]    [c.42]    [c.450]    [c.62]    [c.335]    [c.353]    [c.620]    [c.545]    [c.258]    [c.143]    [c.34]    [c.214]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.825 , c.830 ]




ПОИСК





Смотрите так же термины и статьи:

Карбены



© 2024 chem21.info Реклама на сайте