Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия взаимодействия между молекулами дисперсионная

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Механические свойства коагуляционных дисперсных структур зависят от геометрии частиц, от свойств дисперсной фазы и дисперсионной среды, а также, в особенности, от характера взаимодействия между частицами. Модифицирование поверхности частиц, использование физической адсорбции поверхностно-активных веществ и хемосорбции является эффективным средством изменения механических свойств коагуляционных структур. При этом наибольшее повышение прочности достигается при некотором оптимальном соотношении энергий взаимодействия между частицами дисперсной фазы, молекулами дисперсионной среды и взаимодействия молекул дисперсионной среды с частицами дисперсной фазы. Такое оптимальное соотношение обычно достигается при частичной адсорбционной или химической лиофилизации поверхности дисперсной фазы, причем поверхность частиц принимает мозаичный характер, оказывается состоящей из лиофильных и лиофобных участков [38 Вопросы образования коагуляционных структур и влияния на их прочность адсорбционного и химического модифицирования имеют большое значение для теории и практики использования активных наполнителей в технологии полимеров, а также для разработки оптимальных приемов армирования пластиков волокнистыми дисперсными структурами. [c.23]

    Однако при численных расчетах энергий адсорбции чаще всего пользуются уравнением (7). При этом предполагается, что последние два члена в уравнении (II) компенсируются влиянием сил отталкивания (см. раздел IV, 4). Уравнение (7) выражает энергию взаимодействия между двумя атомами. Для того чтобы рассчитать энергию адсорбции, необходимо сначала вычислить энергии взаимодействия между адсорбированным атомом и каждым из атомов адсорбента, а затем полученные величины просуммировать. Это суммирование является законным, так как дисперсионные силы в первом приближении обладают аддитивными свойствами. Если вместо атома адсорбируется молекула, то суммирование должно быть распространено на все атомы, входящие в состав этой молекулы. В последнем случае иногда можно ожидать отклонений от [c.30]

    ПЛ. Дисперсионная энергия взаимодействия между отдельными молекулами [c.43]

    Под влиянием реактивного взаимодействия энергия образования слабых химических связей снижается, что понижает энергию связи в ассоциативных или агрегативных комбинациях. Это взаимодействие повышает энергию диполь-дипольного, дисперсионного (лондоновского) и поляризационного взаимодействия между молекулами жидкости. [c.102]


    Кроме того, имеет место еще один эффект С/д п — изменение энергии ири взаимодействии между молекулами воды слоя сольватного комплекса и окружающей водой. Это — сложный эффект, состоящий из трех слагаемых электростатического взаимодействия диполей, взаимной поляризации диполей и дисперсионного взаимодействия между ними. Приближенно он определяется выражением [c.177]

    Дисперсионные силы обладают тремя характерными чертами. Они осуществляются во всех атомных системах, содержащих электроны, т. е. являются универсальными. Они не зависят от температуры. Наконец, эти силы аддитивны. Это означает, что энергия взаимодействия между двумя молекулами не зависит от присутствия третьей. Казалось бы, двигаться в такт три электрона не могут. Однако полное движение в такт не осуществляется из-за большой нулевой энергии. Состояние ориентировки осуществляется лишь на доли процента чаще, чем наиболее невыгодная конфигурация. Такой малый учет положения соседнего электрона может быть осуществлен одновременно по отношению к многим соседям. [c.340]

    В узлах молекулярной кристаллической решетки расположены молекулы, связанные между собой слабыми межмолекулярными связями. Характер межмолекуляр-ных сил и энергия взаимодействия молекул определяются их природой между неполярными молекулами действуют дисперсионные силы энергия взаимодействия между полярными молекулами складывается из дисперсионных, ориентационных и индукционных сил. Если молекулы содержат связи N—Н, О—Н и Р—Н, например NHз, НгО, НР, СНзОН, СНзСООН, то существенный вклад в энергию взаимодействия между такими молекулами вносит водородная связь. От природы молекул зависит и строение молекулярных кристаллов. Кристаллы, построенные из неполярных молекул, характеризуются высокими значениями координационных чисел, например у иода координационное число равно 12. Если между молекулами действуют водородные связи, как, например, у льда, координационное число может понижаться до 4. [c.81]

    Дисперсионные силы универсальны и характерны для любых атомов и молекул действительно, только этими силами обусловливается ассоциация молекул, не обладающих ни свободным зарядом, ни электрическим дипольным моментом. В силу высокой поляризуемости я-электронов особенно сильные дисперсионные взаимодействия возникают между молекулами, содержащими сопряженные я-электронные системы (например, между ароматическими углеводородами). Впрочем, ассоциация других легко поляризуемых биполярных молекул также в большой степени обусловлена дисперсионными взаимодействиями. Например, расчетная величина энергии когезии жидкого бута-нона-2 при 40°С складывается из ориентационной (8%), индукционной (14%) и в основном дисперсионной энергии (78%) [35]. Потенциальная энергия взаимодействия двух молекул с [c.34]

    Здесь и — молярная внутренняя энергия, Ут — молярный объем, Т—абсолютная температура. При малом расширении не обязательно нарушатся все взаимодействия между молекулами растворителя. Внутреннее давление возникает вследствие того, что силы взаимодействия между молекулами превышают силы отталкивания, т. е. обусловлено главным образом дисперсионным и диполь-дипольным взаимодействиями (табл. 3.2). [c.95]

    Хотя между когезионным и внутренним давлением, очевидно, существует тесная связь, они не эквивалентны, о чем свидетельствуют приведенные в табл. 3.2 величины сия некоторых органических растворителей [99, 100, 154]. Высказывалось предположение, что величина я отражает главным образом дисперсионные и диполь-дипольные взаимодействия в растворителе, а величина с включает, кроме того, и специфические взаимодействия между молекулами растворителя типа водородных связей. Возникновение водородных связей в растворителе повышает когезионное давление, в то время как внутреннее давление при этом не меняется. Следовательно, давление, обусловленное водородными связями, или соответствующий вклад в когезионную энергию можно оценить по разности (с—я) <[99—100]. Близкие к с величины я характерны только для неполярных (или слабополярных) растворителей с дипольным моментом менее 7-10 Кл-м (около 2Д), для которых специфические межмолекулярные взаимодействия нетипичны. Как показывают приведенные в табл. 3.2 данные, отношение п л,1с близко к -единице в случае неполярных растворителей (например, углеводородов), но у других растворителей может быть как меньше, так и больше единицы. Так, большие значения п типичны для лишенных межмолекулярных взаимодействий фторуглеводородов, а очень низкие значения п — для растворителей, являющихся донорами водородных связей. [c.96]

    Как показывает уравнение (8.37), коэффициент селективности связан с разностью теплот адсорбции компонентов бинарной смеси газов. Теплота адсорбции отражает общую энергию взаимодействия между адсорбентом и адсорбатом, которая сама является суммой нескольких видов энергии взаимодействия (см. разд. Г). Роль различных типов энергии взаимодействия отчетливо проявляется в характере адсорбции смесей, содержащих молекулы, отличающиеся по свойствам. В смеси метана и окиси углерода величины дисперсионного и поляризационного взаимодействия больше для метана. Однако в энергию адсорбции окиси углерода значительный вклад вносят дипольное и квадрупольное взаимодействие. В результате окись углерода селективно адсорбируется из смеси с метаном (рис. 8.42). [c.711]


    Дисперсионные силы играют большую роль при взаимодействии не только молекул, но и частиц коллоидного размера 10-1000 А. Как показали физико-химики Л. Д. Ландау и Б. В. Дерягин, а затем Э. Фервей и Я. Т. Овербек, энергия взаимодействия отдельной молекулы с поверхностью коллоидной частицы убывает обратно пропорционально кубу расстояния между ними, двух поверхностей — квадрату расстояния между ними  [c.279]

    Рассмотрим зависимость от расстояния энергии притяжения частиц — молекуляриой составляющей расклинивающего давлс ния. Из сил Ван-дер-Ваальса наиболее универсальными и существенными силами притяжения являются лондоновские силы дисперсионного взаимодействия. Как уже отмечалось, дисперсионное взаимодействие слабо экранируется, и поэтому взаимодействие между частицами легко определить суммированием взаимодействий между молекулами или атомами в обеих частицах, например, с помощью интегрирования. Такой приближенный расчет в предположении аддитивности межмолекулярных (межатомных) взаимодействий был проведен де Буром и Гамакером. Для вывода уравнения энергии молекулярного притяжения между частицами воспользуемся уравнением энергии притяжения одной молекулы (атома) к поверхности адсорбента (в данном случае частицы), приведенном в разд. III. А, посвященном адсорбции (111.6)  [c.328]

    Сравнение уравнений (34) и (41) показывает, что Лоренц и Ланде дали физическую интерпретацию для величин а, и /и, входящих в расчет Эйкена в качестве эмпирических констант. Для взаимодействия постоянного диполя с проводящей поверхностью а,= 2 4 и т—3. Позже мы увидим, что энергия взаимодействия между молекулой газа и поверхностью обратно пропорциональна третьей степени расстояния между мо-лекуло и поверхностью не только для ориентационного эффекта, который был здесь обсужден, но также и для индукционного и дисперсионного эффектов. [c.273]

    Установлено, что при экстракции неполярными экстрагентами при гемпературах вблизи критического состояния растворителей также проявляется избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической про — исхо, ит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате, при определен — 1ГЫХ гемпературах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры — углеводороды с меньптей молекулярной массой. При температурах, превышающих критическую,из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов (рис.6.4). [c.221]

    Рассмотрим кратко влияние этих факторов иа адсорбцию на границе ядро — дисперсионная среда. Если дисперсная фаза (например, асфальтены) и диснерсионная среда (парафины) ре.зко различаются по полярности, взаимодействие между ними незначительно. В этом случае элементы структуры дисперсной фазы находятся в состоянии, аналогичном модели ССЕ по Ленгмюру (гтах, Лт ,,) система склонна к расслоению. Поверхности с высокой поверхностной энергией легко адсорбируют алканы с образованием монослоя с низкой поверхностной энергией. Введение в систему аренов или других аналогичных добавок изменяет обстановку. Изменения наступают в результате влияния растворения на баланс сил в системе и в конечном счете на размеры гик ССЕ. Поскольку парные взаимодействия между молекулами алканов и аренов слабее, чем между молекулами аренов, то с поверхности ядер ССЕ удаляются алканы. В итоге формирую я активные ССЕ (с повышенной поверхностной энергией). Активные ССЕ обладают нескомиенсированной поверхностной энергиеС , что является движущей силой для роста размеров ССЕ. Все эти стадии схематически выглядят так  [c.78]

    Контакт топ п1в с кислородом может быть нерегулируемый (при хранении и транспортировании) и регулируемый (например, при сжигании в двигателях). При контакте топлива с кислородом воздуха в общем случае возможны три варианта взаимодействия. Первый характеризуется отсутствием изменс-пнй молекулярной структуры компонентов, участвующих во взаимодействии, и обратимым изменением массы топлива. Описанная ситуация возникает прп барботировании воздуха через топливо или случайном попадании его при хранении н транспортировании. Пузырьки воздуха коллоидно-дисперсных размеров, имеющих вокруг себя толстые абсорбционно-сольватные слои, находятся в топливе. Энергия взаимоде11ствия между молекулами в адсорбционно-сольватном слое значительно превышает энергию взаимодействия адсорбцнонно-сольватного слоя с кислородом воздуха. Так как обмен между адсорбционносольватным слоем и дисперсионной средой происходит без изменения структуры молекул, то топливо обладает бесконечной химической стабильностью. [c.214]

    Вследствие аддитивности дисперсионных сил энергия взаимодействия между макроскопическими телами убывает с расстоянием значительно медленнее, чем между отдельными молекулами. Так, для плоскопараллельных пластин при расстояниях К > 100 нм с учетом запаздьшающих сил энергия взаимодействия пропорциональна При К в несколько десятков нм система переходит в область незапаздывающих сил при К < 1 нм энергия взаимодействия пропорциональна [185... 187]. Когда К соизмерим с межатомными расстояниями, возникает необходимость учета электростатических взаимодействий между полярными элементами структуры твердого тела. При соприкосновении и перекрывании электронных орбиталей поверхностных атомов сближающихся частиц становится заметным вклад близкодействующих сил и в тем большей степени, чем меньше К, что сопровождается или броуновским отталкиванием, или образованием валентных связей. Таким образом, при достаточно больших К между макроскопическими телами действуют практически одни дисперсионные силы, а по [c.98]

    Кроме рассмотренного дисперсионного взаимодействия между двумя молекулами существует также простое дипольное взaи ю-действие (Кеезом, 1915—1921 гг.) или взаимодействие индуцированных диполей (Дебай, 1920—1921 гг.), если хотя бы одна из молекул обладает постоянным дипольным моментом. И в этом случае энергия обратно пропорциональна шестой степени расстояния между молекулами, но, по-видимому, два последних взаимодействия играют очень малую роль в полном взаимодействии между конденсированными фазами, определяющем А я, так как они неаддитивны, вследствие чего их суммарный эффект сильно снижается. Поэтому при расчете A J, даже в случае сильнополярных молекул (Н2О, МНз) компонентами Кеезома и Дебая, которые превосходят лон-доновскую компоненту в энергии взаимодействия отдельных молекул, в настоящее время пренебрегают [2]. [c.171]

    Сопоставление энергии межмолекулярного взаимодействия данного вида для различных веществ обнаруживает большие различия. Например, энергия дисперсионного взаимодействия между молекулами воды приблизительно в 4 раза, а между молекулами хлора — в 41 раз больше, чем тот же вид взаимодействия между молекулами водврода. Здесь сильно сказывается индивидуальность вещества, характер межатомных связей, особенности в строении молекул. [c.98]

    Энергия взаимодействия между двумя молекулами в газовой фазе записывается как сумма эффектов, связанных с отдельными составляющими ориентационной (L or), индукционной (Uind), дисперсионной ( /<л ) и энергии отталкивания (t/ p). Величину U отсчитывают от. нулевого уровня, отвечающего бесконечно большому расстоянию между молекулами  [c.123]

    Л = Ь, происходит их слияние и полностью исчезают две поверхност раздела с суммарной энергией 2а. Равенство же 2а =—и,по1(Ь) спра ведливо лишь для жидких неполярных фаз, в которых взаимодействие между молекулами обусловлено дисперсионными силами и о  [c.29]

    Равенство ] = 2а имеет место для любых жидких фаз, полярных и неполярных. Действительно, при сближении двух объемов единичного сечения до их непосредственного соприкосновения, когда Л 6, происходит их слняние и полностью исчезают две поверхности раздела с суммарной энергией 2<т. Равенство же 1а= — и охф) справедливо лишь для жидких неполярных фаз, в которых взаимодействие между молекулами обусловлено дисперсионными силами и [c.33]

    При магнитной обработке водных сред, по мнению А. X. Мир-заджанзаде, С. Н. Колокольцева, А. Л. Бучаченко, Р. 3. Сагдеева, К. М. Салихова, сравниться с энергией теплового движения и упорядочить внутреннюю структуру могут только структурные химические связи, которые характеризуются взаимодействием двух или нескольких атомов. Они обусловливают образование устойчивой многоатомной системы и сопровождаются существенной перестройкой электронных оболочек связывающих атомов. При этом необходимо учитывать динамику процесса, ведь все электронные орбиты, составляющие оболочку, непрерывно совершают колебательные движения. Чтобы существовала устойчивая и стабильная связь атомов, необходима определенная корреляция в движении электронов, то есть колебания электронных орбит взаимодействующих атомов должны быть синхронны. Синхронность колебаний электронов в атомах свидетельствует о наличии дисперсионного взаимодействия между атомами. Дисперсионные силы имеют электромагнитную и квантовую природу и являются одной из разновидностей межмолекулярного взаимодействия, называемого силами Ван-дер-Ваальса. Дисперсионные силы возникают в результате колебаний электронов соседних атомов или молекул в одинаковой фазе, при этом взаимное притяжение приводит к сближению этих атомов или молекул и образованию между ними связи. [c.36]

    Выражение, полученное Лондоном для дисперсионной энергии взаимодействия между тождественными атомямп или молекулами, имеет вид [c.353]

    Относительно сил и энергии взаимодействия между неодинаковыми молекулами известно сравнительно немгюго. Из теорип дисперсионных сил Лондона следует, что [c.304]

    Энергия притяжевия связана, главным образом, с дисперсионным взаимодействием между молекулами. Она может быть рассчитана по ур1авненто  [c.138]

    Первое слагаемое в правой части уравнения (6.2) представляет собой разность между энергией, расходуемой на образование полости в растворителе для молекулы в основном состоянии, и энергией, расходуемой на образование полости в растворителе для молекулы, находящейся в возбужденном состоянии Франка — Кондона. Так как в большинстве электронных переходов размеры молекул при возбуждении изменяются незначительно, обычно принимают, что —И се = 0. Второе слагаемое отражает дисперсионное взаимодействие между молекулой растворенного вещества и окружающими ее молекулами растворителя, приближенно равное = —ксаОед, , где /)ед — парамет р, практически не зависящий от природы растворителя. Согласно уравнению (6.4), дисперсионные взаимодействия определяются показателем преломления п растворителя. Третье и четвертое слагаемые уравнения (6.2) описывают изменение энергии, обусловленное уменьшением или увеличением дипольного момента молекулы растворенного вещества при возбуждении. Величина третьего слагаемого определяется изменением дипольного момента и в еще большей степени показателем преломления растворителя, а величина четвертого слагаемого зависит от дипольного момента основного состояния, изменения дипольного момента при возбуждении и диэлектрической проницаемости растворителя. Наконец, пятое слагаемое определяется изменением поляризуемости ( е—а ) Молекул растворенного вещества при возбуждении.  [c.429]

    Дисперсионное взаимодействие проявляется между любыми молекулами, по у полярных молекул иа него накладывается орнентациос.ное взаимодействие. Поэтому общая энергия взаимодействия между полярными молекулами или полярными группами больше, чем между неполярными Так. если энергия взаимодействия между углеводородными группами —СНг— или —СН—СН— составляет примерно 1,0 ккал[.коль, то взаимодсйстние между группами —С— I составляет около 3.4 ккал(моль. [c.84]

    Следует отметить роль дисперсионных сил в гидрофобных взаимодействиях. Дисперсионные силы повышают энергию взаимодействия между одинаковыми неполярными группами. Контакты между одинаковыми (алифатическими или ароматическими) группами приводят к уменьшению свободной энергии приблизительно на 0,5 ккал1моль по сравнению с контактами между разными группами [8—18]. Это означает, что среди компактных структур белковой молекулы предпочтительными являются структуры, обеспечивающие максимальное число контактов ароматических амино- [c.15]


Смотреть страницы где упоминается термин Энергия взаимодействия между молекулами дисперсионная: [c.109]    [c.122]    [c.81]    [c.113]    [c.125]    [c.30]    [c.122]    [c.84]    [c.122]    [c.55]   
Адсорбция газов и паров Том 1 (1948) -- [ c.5 , c.62 , c.256 , c.343 ]

Адсорбция газов и паров (1948) -- [ c.5 , c.62 , c.256 , c.343 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие дисперсионное

Дисперсионная энергия взаимодействия между отдельными молекулами

Дисперсионные

Молекула взаимодействие

Молекула энергия дисперсионного взаимодействия

Энергия взаимодействия

Энергия взаимодействия дисперсионная

Энергия взаимодействия между молекулами

Энергия молекул



© 2025 chem21.info Реклама на сайте