Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкил галогениды замещения

    Даже алкилирование по Фриделю — Крафтсу по отношению к алкил-галогениду является нуклеофильным замещением с участием нуклеофильного ароматического кольца. [c.784]

    Поскольку алифатические галогениды первоначально идентифицируются по данным элементного анализа на галогены (гл. 4), то естественно, что для их последующего изучения используют способность атома галогена к замещению. Ниже обсуждаются две реакции замещения галогена (X), дополняющие друг друга. Они очень часто используются для установления структуры алкил-галогенидов. [c.233]


    В гл. 10 рассматривались некоторые преимущества классификации органических соединений в соответствии с их функциональными группами. Другим способом классификации различных типов соединений является рассмотрение их как замещенных на органические остатки производных воды, аммиака, сероводорода, азотной или азотистой кислоты и т. д. Во всех этих соединениях на органическую группу замещен один или большее число атомов водорода. Из табл. 11-1 видно, каким образом спирты, простые эфиры, карбоновые кислоты, ангидриды и сложные эфиры можно рассматривать в качестве производных воды меркаптаны и сульфиды — как производные сероводорода амины и амиды — как производные аммиака алкилнитраты — как производные азотной кислоты нитроалканы и алки-нитриты — как производные азотистой кислоты алкилсульфаты — как производные серной кислоты. В целях полноты описания включены также алкил-галогениды, которые выше классифицировали как замещенные алканы, но которые могут рассматриваться и как производные галогеноводородов. [c.254]

    Реакции нуклеофильного замещения далеко не ограничиваются алкил-галогенидами. Другими алкильными производными при этих реакциях могут быть спирты, простые и сложные эфиры и ониевые соли . Примеры реак-ций некоторых алкильных производных различного типа с различными нуклеофилами приведены в табл. 11-3. [c.259]

    Алкилфосфоновые кислоты. Способы получения. 1. Нуклеофильное замещение алкилфосфитами у насыщенного атома углерода алкил-галогенидов. [c.302]

    В случае алюмогидрида лития и большинства других гидридов металлов механизм представляет собой простое нуклеофильное замещение, где атака осуществляется гидрид-ионом, который может быть или не быть свободным. Скорее всего реализуется механизм Sn2, а не SnI, так как, во-первых, первичные галогениды реагируют лучше, чем вторичные или третичные (третичные субстраты обычно дают алкены или не реагируют совсем), и, во-вторых, было продемонстрировано вальденовское обращение. Однако перегруппировки, происходящие при восстановлении бициклических тозилатов алюмогидридом лития, указывают на то, что может реализовываться и механизм SnI [886]. Имеются доказательства того, что алюмогидрид [c.177]

    Из одного алкана в зависимости от того, какой атом водорода замещается, может образоваться несколько изомерных продуктов. Из этана может образоваться только один галогенид пропан, н-бутан и изобутан могут дать два изомера, н-пентан — три изомера и изопентан — четыре. Экспериментально показано, что при галогенировании алкана образуется смесь всех возмо ных изомерных продуктов, что свидетельствует о способности всех водородных атомов подвергаться замещению. Например, при хлорировании [c.117]


    С другой стороны, скорость элиминирования зависит в основном (разд. 5.15) от устойчивости образующегося алкена третичные галогениды, которые дают более замещенные (более устойчивые) алкены, быстрее подвергаются элиминированию. [c.469]

    Атакующая частица может быть нейтральной молекулой, если при этом она имеет несвязывающую пару электронов на ВЗМО, энергия которой близка к энергии НСМО алкил-галогенида. Так, реакцию между аммиаком и хлорометаном можно рассматривать как типичную реакцию замещения движение электронных пар можно изобразить, используя изогнутые стрелки  [c.48]

    Мономолекулярный механизм становится предпочтительнее бимолекулярного, когда промежуточный карбокатион стабилизируется делокализацией электронов и(или) уменьшением стерического напряжения. Так, в реакциях замещения хлора на гидроксид первичные алкилгалогениды реагируют с гидроксид-анионом по механизму согласованного замещения, а третичные алкилгалогениды-преимущественно по двухста дийному ионизационному механизму. Изменение механизма в этом случае связано как с полярными, так и со стерическими эффектами. Бимолекулярному замещению препятствует большой объем третичной группы и, кроме того, подход атакующего аниона затруднен наличием электроноотталкивающих групп, т.е. реакция бимолекулярного замещения будет нехарактерной для третичных алкил-галогенидов. В то же время ионизационный механизм будет преобладать, когда заряд рассредоточен, т.е. реакционный центр разветвлен если реакционный центр сдавлен, то образование карбокатиона будет способствовать снятию стерического напряжения. В некоторых случаях карбокатионы стабилизируются резонансом, например трифенилметил-ка-тион, для которого наблюдается только двухстадийный кар-бокатионный механизм. [c.81]

    Зависимости между полярографическими потенциалами полуволны и энергиями молекулярных орбиталей исследовали Фукуи и сотр. [11]. Расчет энергий низших незанятых ст-орбиталей методом молекулярных орбит в приближении ЛКАО показал, что замещение водорода галогеном обусловливает значительное изменение в энергии наинизших незаполненных уровней, но не изменяет заметно энергии наивысших заполненных уровней. Полярографические потенциалы полуволны хлор-, бром- и иодметанов достаточно хорошо коррелируют с энергиями наинизших свободных а-орбита-лей. Из этого был сделан вывод, что при восстановлении алкил-галогенидов определяющая потенциал стадия включает перенос электрона на низший свободный а-уровень связи углерод — галоген. [c.196]

    Что касается свойств а-галогенальдегидов и а-галогенкетонов, то в реакциях SnI а-галогены оказываются чрезвычайно инертными, тогда как при Sn2-замещении они исключительно подвижны по сравнению с галогеном в алкил-галогенидах, сходных в отношении пространственных факторов. а-Галоген-замещенные карбоновые кислоты обладают аналогичными свойствами, которые обсуждаются подробно в гл. 16. [c.423]

    Этот процесс восстановления обладает общими характерными чертами реаквдш нуклеофильного замещения и очень напоминает реакции реактивов Гриньяра с алкил-галогенидами. Реакция алюмогидрида лития с галоидными соединениями протекает труднее, чем с соединениями, имеющими функции, содержаище кислород или азот, а в некоторых случаях реакция не идет в течение определенного премежутка времени даже в среде кипящего диэтилового эфира. Это затруднение можно обойти, если работать с такими растворителями, как тетрагидрофуран и ди-н-бутиловый эфир, которые позволяют вести реакцию при более высокой температуре. [c.138]

    Прямое замещение галогена металлом было впервые использовано в 1900 г. Гриньяром, синтезировавшим алкилмагнийгалоге-ниды — реактивы, названные его именем и вытеснившие цинкдиалки-лы из органического синтеза. Ноллер отмечал, что применение цинкдиалкилов затрудняется их самовозгораемостью на воздухе, необходимостью приготовления большого количества медноцинкового сплава, высокой стоимостью исходных алкилиодидов и низкими выходами цинкдиалкилов, за исключением диметил- и диэтилпроиз-водных. Реактивы Гриньяра лишены этих недостатков, к тому же их легко приготовить, перемешивая чистый магний (не менее 99%) с алкилгалогенидами в безводном диэтиловом эфире. Начавшись, реакция протекает затем очень быстро. Прибавляя порциями алкил-галогенид, получают эфирный раствор алкилмагнийгалогенида (о его строении см. стр. 29)  [c.19]

    Образование олефинов. тенденция к гетерояитическому разрыву углерод-углеродной связи в условиях сольволиза особенно свойственна разветвленным алкил-галогенидам, 1,3-диолам и (5-замещенным органическим кисло- [c.109]

    Наряду с реакцией алкилирования ацетиленидов натрия в условиях этой реакции возможны различные побочные процессы, например, образование дизамещенных алкинов (в случае самого ацетилена). При использовании разветвленных галоидных алкилов (как уже упоминалось) возможно отщепление га-лоидоводорода под действием амида натрия с образованием олефина. Проведение реакции алкилирования тяжелыми галоидными алкилами требует повышенной температуры, что может вызвать изомеризацию образующегося алкина-1. Следует иметь в виду возможность частичного восстановления (особенно замещенных ацетиленов) и частичный гидролиз ацетиленидов и алкил галогенидов при наличии следов влаги в исходных реагентах  [c.52]


    Известно, что соли нитроалканов при взаимодействии с алкил-галогенидами по механизму нуклеофильного замещения образуют в случае С-алкилирования замещенные нитросоединения, а в случае 0-алкилирования — карбонильные производные, получающиеся в результате распада промежуточных нитрониевых эфиров. Алкилирование солей нитроалканов галогеналкенами изучено в меньшей степени. [c.40]

    При механизме 5 -2 подразумевается, что алкилгалогенид подходит к отрицательно заряженному электроду таким образом, что атом углерода диполя углерод — галоген располагается ближе к электроду. В этом случае пара электронов подходит к молекуле галогепида со стороны, противоположной замещающемуся галогенид-иону. При таком рассмотрении механизм сильно пе отличается от механизма 8 2. В растворе 51-ионизация алкил-галогенида происходит недостаточно быстро но сравнению с электрохимической реакцией, поэтому сольволитически генерируемый карбониевый ион не может являться промежуточной частицей. Ионизации скорее способствует электрическое поле на границе раздела фаз, нри этом диполь углерод — галоген ориентируется так, что галоген будет более удаленным от электрода. Электрическое гюле затем отталкивает галогенид-ион, т. е. способствует сольволизу. Таким образом, единствеш1ым различием между этими двумя механизмами является то, что в одном случае замещение происходит под действием пары электронов, а в другом — под действием электрического поля. Однако ясно, что когда генерируется карбониевый ион, он оттягивает электроны от электрода, и эти два механизма становятся в принципе эквивалентными. [c.163]

    В случаях, когда присоединение катализируется галогенидом алюминия, у которого анион галогена отличается от атома галогена в алкил-галогениде, происходит частичное замещение галогена в продукте алкпли-рования [497а], нанример. [c.101]

    Структурной особенностью гидроксильного иона, которая позволяет ему реагировать таким образом/ является наличие неподеленной пары валентных электронов, которые могут использоваться для образования ковалентной связи (реагенты такого типа называются нуклеофилами). Многие нуклеофилы отрицательно заряжены, однако ряд нейтральных молекул, таких как Н2О и NH3, также имеют нуклеофиль ный -характер. Установлено, что в реакциях замещения галогенов аналогично ОН ведут себя другие нуклеофилы, такие как HS , NH3, N . Более того, в таких реакциях могут замещаться не только атомы галогенов, но и другие группы. Многие реакции алкил-галогенидов могут быть разумно объяснены с позиций бимолекулярного нуклеофильного, замещения (обозначаемого обычно Sjv2). Это помогает нам классй -фицировать реакции алкилгалогенидов, а также предположить некоторые новые реакции и понять невозможность других. [c.16]

    Хотя, как было показано выше, вторичные бромиды в условиях МФК-замещения дают главным образом алкены, более активные мезилаты превращаются во вторичные галогениды с относительно хорошими выходами. Из оптически активного 2-октилмезилата были получены оптически активные хлорид (выход 83%, оптическая, чистота 89%) и бромид (выход 78%, оптическая чистота 82%). Реакцию проводили в присутствии 5 мол.% аликвата 336 или трибутилгексадециламмонийброми-да при 100 °С в течение 1,5 или 0,5 ч соответственно. Для уменьшения рацемизации в результате повторного обмена при получении фторида, который реагирует слишком медленно, использовали эквимолярное количество неорганической соли. [c.113]

    Изучались реакции сочетания алкилгалогенидов с другими металлоорганическими соединениями [1031]. Натрий- и калий-органические соединения более реакционноспособны, чем реактивы Гриньяра, и поэтому вступают в реакции даже с менее активными галогенидами. Сложность заключается в их приготовлении и достаточно долгом сохранении, чтобы успеть прибавить алкилгалогенид. Алкены можно синтезировать сочетанием виниллитиевых соединений с первичными галогенидами [1032] или винилгалогеиидов с алкиллитиевыми соединениями в присутствии палладия или рутения в качестве катализатора [1033]. При обработке медьорганическими соединениями п кислотами Льюиса (например, н-ВиСи-ВРз) аллилгалогениды вступают в реакцию замещения с практически полной аллильной перегруппировкой независимо от степени разветвления обоих концов аллильной системы [1034]. [c.191]

    Реактив Гриньяра RMgX получается при реакции металлического магния с соответствующими органическими галогенидами (разд. 4.18). Этими галогенидами могут быть алкил- (первичные, вторичные, третичные), аллил-, аралкил- (например, бензил) или арилгалогениды (фенил или замещенный фенил). Галогенами могут быть С1, Вг или I. (При синтезе арилмагнийхлори-дов реакцию проводят в циклическом эфире — тетрагидрофуране вместо ди-этилового эфира.) [c.493]

    Если углеводородный радикал в алкил-, алкенил- или алкинил-га-логениде в результате замещения галогена оказался связанным с каким-то другим атомом (или группой атомов), то говорят, что произошло алкилирование последнего. В таком случае соответствующий галогенид, претерпев нуклеофильное замещение галогена, выступил в качестве алкилирующего агента - поставщика алкильного радикала. Подобные реакции весьма широко используют в органическом синтезе. Рассмотрим важнейшие из них. [c.136]

    Третичные галогениды, как известно, легко подвергаются дегидрогалогенированию с образованием алкенов. По этой причине их практически нельзя использовать в реакциях нуклеофильного замещения с участием нуклеофилов, являющихся достаточно сильными основаниями. Однако применение краун-эфиров дает возможность проводить подобные реакции, правда, со сравнительно невысокими выходами. Например, при обработке третичных бромидов едким кали в воде образуются исключительно алкены при проведении же этрй реакции в присутствии эфира 18-краун-6 в бензоле удается получить продукт нуклеофильного замещения - соответствующий третичный спирт  [c.215]

    Особое место среди реакций нуклеофильного присоединения по карбонильной группе альдегидов и кетонов занимает реакция, открытая Виттигом. Она позволяет замещать карбонильный кислород на метиленовую и замещенную метиленовую группы и синтезировать таким образом из альдегидов или кетонов соответствующие алкены. Реактив Виттига, который используют для этого превращения, готовят, смешивая соответствующий галогенид с трифенилфосфином (получают из хлорида фосфора(Ш) и фенилмагнийбромида, см. разд. 2.3.1) и далее обрабатывая полученную соль сильным основанием (бутилли-тий, этилат натрия, трет-бутияат калия, амид натрия и т. д). [c.238]

    Другую группу комплексов переходных металлов, которые могут быть использованы для синтеза замещенных алкенов, составляют я-аллилникельгалогениды [12]. Эти реагенты могут быть получены рядом методов, легко очищаются и в отсутствие кислорода хранятся в течение нискольких недель. Они могут быть получены с выходом 75—90% нагреванием аллилгалогенидов с тетракарбонилникелем в бензоле, однако в лабораторных условиях их удобнее получать взаимодействием бис (циклопентадиен-1,5) никеля с аллилгалогенидами при —10 °С, а также взаимодействием бис(я-аллил) никеля (II) с бромоводородной кислотой. В полярных координирующих растворителях эти комплексы реагируют с рядом органических галогенидов, образуя замещенные алкены [схема (2.10)] [13]. Реакция одинаково хорошо протекает для арил-, винил- и алкилгалогенидов, а также в присутствии гидроксильной, сложноэфирной и других функциональных групп. Например, комплекс (6) реагирует с 1-иод-З-хлорпропаном, образуя соединение (7) [схема (2.11)] [14]. [c.24]

    Алкилгалогениды могут быть превращены в сложные 4фиры путем реакции с монооксидом углерода и спиртом в присутствии основания при использовании ЫаСо(СО)4 в качестве катализатора [42]. Как и в соответствующем синтезе карбоновых кислот, применение реакционноспособных субстратов, таких как алкил-иодиды и бензилгалогениды, которые чувствительны к нуклеофильному замещению анионом [Со( 0)4]". требует очень мягких условий (25°С, давление СО 1 атм) при этом происходит замещение атома галогена на алкоксикарбонильную группу. Однако в случае менее реакционноспособных галогенидов необходимо использование более высоких температур в этом слут чае возможна изомеризация алкилкобальтового интермедиата, что может привести к образованию смеси продуктов [схема (6.53)]. [c.208]


Смотреть страницы где упоминается термин Алкил галогениды замещения: [c.154]    [c.193]    [c.282]    [c.67]    [c.407]    [c.36]    [c.428]    [c.115]    [c.370]    [c.233]    [c.36]    [c.492]    [c.154]    [c.142]    [c.173]    [c.587]    [c.212]    [c.275]    [c.422]   
Органическая химия (1964) -- [ c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Алкил галогениды

Алкил галогениды нуклеофильного замещения

Алкил галогениды стереохимия нуклеофильного замещения



© 2025 chem21.info Реклама на сайте