Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты очистка

    Метод фотохимического разложения сероводорода. Разработан швейцарскими и итальянскими химиками. При фотохимическом разложении сероводорода в присутствии катализатора — суспензии сульфида кадмия и диоксида рутения — образуются водород и сера. Механизм этой реакции заключается в следующем. В сульфиде кадмия (соединение С полупроводниковыми свойствами) электроны под действием света начинают перемещаться, оставляя положительно заряженные дырки, и восстанавливают водород из водного раствора. Ион гидроксида разлагает молекулу водорода с образованием сульфид-иона, который окисляется до элементарной серы. Этот процесс можно использовать для очистки газов от сероводорода. [c.54]


    Активный ил богат азотом, фосфором, микроэлементами (медь, молибден, цинк). После термической обработки его можно использовать как удобрение. Но необходимо учитывать и возможные отрицательные последствия его применения в связи с наличием солей тяжелых металлов и т. п. Извлечение ионов тяжелых металлов и других вредных веществ из сточных вод гарантирует получение безвредной биомассы, которую можно использовать в качестве кормовой добавки или удобрения. В случае образования больших объемов осадков сточных вод, содержащих соли тяжелых металлов, целесообразно сжигание осадков. В ФРГ предложен способ получения заменителей нефти и каменного угля на основе активного ила. Подсчитано, что количество тепла, получаемое при сжигании 350 тыс. т активного ила, эквивалентно его количеству, получаемому при сжигании 350 тыс. баррелей нефти и 175 тыс. т угля. Ведутся поиски и других путей утилизации осадков и активного ила, образующихся при очистке сточных вод. [c.110]

    Ионный обмен [5.19, 5.32, 5.33,. 5.34, 5.40, 5.55]. Метод основан на улавливании катионов и анионов химических соединений естественными материалами или синтетическими смолами с последующей регенерацией последних и получением уловленных продуктов. Для очистки сточных вод от катионов применяют искусственные смолы (катиониты КУ-2, КУ-1), органические катиониты (сульфо-уголь СМ-1, СК-1) и природные минеральные катиониты (вермикулит, доломит, глауконит и др.). Обмен происходит по реакциям [c.487]

    В последнее время для очистки сточных вод от взвешенных частиц делают попытки использовать химическую, биологическую и ионную флотацию. Химическая флотация основана на введении в воду соединений, которые в реакциях с водой или друг с другом образуют пузырьки газов — О2, СЬ, СО2 и т. д. Биологическая флотация основана на деятельности микроорганизмов в воде. На поверхности частиц активного ила или осадка образуются пузырьки газов, которые уносят частицы в пенный слой, где они отделяются и обезвоживаются. Ионная флотация достигается введением в воду совместно с воздухом соединений, имеющих заряд, противоположный заряду извлекаемых ионов, например металлов Мо, V, Pt и др. Процесс эффективен при концентрации извлекаемых ионов (0,1 — 1) 10-2 моль/л. [c.478]

    Очистку сточных вод до санитарных норм этот метод самостоятельно чаще всего не обеспечивает. Наиболее целесообразно совмещать его с адсорбцией и ионным обменом. [c.486]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]


    Наиболее распространены следующие методы очистки подложек механическая обработка, отмочка и мойка в растворах, очистка растворителями, химическое травление нерастворимых загрязнений, очистка в тлеющем разряде, ионная очистка и др. Жидкостные методы часто сочетаются с циркуляцией растворов, их перемешиванием, а также с ультразвуковым воздействием [371]. [c.199]

    Растворимость электролита в присутствии одноименного иона. Очистка хлорида натрия. [c.236]

    Для очистки хромовокислых вод применяют ионообменные установки, так как химические методы экономически нерациональны. Для ионной очистки наиболее широко используют синтетическую смолу на основе стирол-дивинилбензола. Она характеризуется чрезвычайно высокой стойкостью против кислого щелочного и сильно окисляющего действия и обладает высокой обменной емкостью. Концентрированные растворы, содержащие более 25 — 40% хромовой кислоты, необходимо разбавлять водой перед проведением ионного обмена. При наличии в сточных водах 10%-ной хромовой кислоты можно проводить 300 процессов обмена. Ионообменник наполнен мелкими зернами (менее 1 мкм), помещенными на дно фильтра в цилиндрическом сосуде, изготовленном из материала, устойчивого против пропускаемой жидкости. [c.276]

    Соединения фосфора из сточных вод извлекают с помощью коагуляции. Соединения азота удаляют методами отдувки, ионного обмена, электролиза, химическим или биологическим способом, Трехстадийная схема удаления соединений азота включает процессы аэрации, нитрификации и денитрификации. Б результате глубокой очистки содержание биогенных элементов снижается на 98—99%. [c.106]

    Ионная очистка поверхности проводится в тех же установках и при тех же условиях, что и нанесение покрытия. К обрабатываемой детали подводится отрицательный потенциал порядка нескольких киловольт. По окончании ионной очистки подложки ток разряда уменьшается до некоторого постоянного значения. Процесс ионного осаждения можно проводить после стабилизации тока разряда. [c.126]

    В результате ионной очистки на поверхности металла проявляются границы зерен, углубления, дислокации, поверхность становится более шероховатой, что способствует улучшению адгезии покрытия с поверхностью. [c.126]

    Проблема получения высококачественных ионитов приобрела в настоящее время крупное народнохозяйственное значение в связи с ежегодным расширением применения в промышленности ионообменных процессов. Несомненно, что при этом решающее значение имеют затраты на материалы для ионитовых мембран и фильтров, снижение которых приведет к дальнейшему развитию ионной очистки природных и обезвреживания промышленных вод. Современная техника предъявляет к синтезируемым сорбентам чрезвычайно многообразные и подчас трудновыполнимые требования. Достаточная емкость, механическая прочность, устойчивость по отношению к некоторы.м агрессивным средам, хорошие кинети- [c.72]

    В установках, собранных из металлических деталей, стартовый период насосов диодного типа с изолированным анодом сопровождается заполнением полости откачиваемой системы газоразрядной плазмой. Это способствует эффективной ионной очистке системы и достижению более низкого остаточного давления однако продолжительность запуска возрастает. Кроме того, появляется опасность электрического или электротермического повреждения приборов и оборудования, расположенных в камере. При понижении давления до (5- -8) 10 Па разряд [c.189]

    Пассивация связана не только с упоминавшимся ранее окислением мембраны при взаимодействии с кислородом. Пассивированные поверхности могут образовываться даже в сверхвысоком вакууме в результате термической сегрегации примесных неметаллических атомов — углерода, серы, фосфора, кислорода и др. Такой процесс идет по следующей схеме. После ионной очистки в разряде поверхность металлического образца становится атомно чистой и приобретает чрезвычайно высокую химическую активность. Прогрев приводит к диффузионному переносу растворенных атомов углерода, других неметаллов из толщи образца на поверхность, где они переходят в хемосорбированное состояние. Такой процесс может оказаться энергетически предпочтительным. Поэтому при очень малых о ьемных концентрациях примесных атомов — вплоть до 10" — на поверхности могут устойчиво существовать даже их монослои. [c.266]

    Различные руководства предлагают множество способов устранения несмачиваемости, вызванной гидрофобностью поверхности. Наиболее чистым и надежным является редко описываемый методический прием ионная очистка в высокочастотном газовом разряде. Лучше всего этот процесс протекает сразу после покрытия сеток углеродом. Если вакуумный испаритель оборудован ионно-очистным трансформатором, его включают после прекращения работы диффузионного насоса, когда под колокол проникает немного воздуха, и начинают новый цикл. При отсутствии встроенного трансформатора сходного результата достигают приложением к внешнему вводу колокола управляемой вручную высокочастотной индукционной катушки Тесла. Голубоватый газовый разряд выглядит по-разному в зависимости от степени вакуума. Как и в случае ионизационного счетчика, он будет слабым и при слишком низком, и при слишком высоком вакууме. С помощью метода проб и ошибок исследователь может найти наилучшие условия обработки сеток. Сетки подвергают обработке в течение 30-60 с. После этого они пригодны для использования и могут быть извлечены из прибора. Если сетки не используют в течение примерно недели, то может потребоваться их повторная обработка. [c.230]


    Ионный обмен и ионообменная хроматография широко используются в количественном анализе. С помощью ионитов можно производить очистку реагентов, концентрировать разбавленные растворы. В последнем случае через ионит пропускают разбавленный раствор, после чего поглощенные им ионы вытесняют сравнительно небольшим количеством того или иного реагента (например, кислоты). В полученном гораздо более концентрированном растворе определяют соответствующие ионы. [c.132]

    Обратный осмос и ультрафильтрование. Метод основан на разделении растворов фильтрованием через мембраны с диаметром пор 1 нм (обратный осмос) и 5—200 нм (ультрафильтрование). Эти мембраны пропускают молекулы воды и непроницаемы для гидратированных ионов солей или молекул недиссоциированных соединений. От обычного фильтрования такой процесс отличается возможностью отделять частицы меньших размеров. Давление, необходимое для очистки методом обратного осмоса, 6—10 МПа, а для ультрафильтрования 0,1—0,5 МПа. В качестве материала мембран используются ацетатцеллюлоза, полиамиды и другие полимеры толщиной 100—200 нм [5.22, 5.24, 5.55, 5.64]. [c.485]

    В промышленности получили распространение процессы, основанные на фильтровании растворов через полупроницаемые перегородки (мембраны). Ультрафильтрование при давлении 0,1— 0,5 МПа обеспечивает отделение частиц размером до 0,5 мкм, а использование обратного осмоса при давлении 3—10 МПа позволяет производить очистку растворителя от частиц, равных диаметру молекул или гидратированных ионов. Качество разделения зависит от природы и концентрации соединений в сточных водах, от температуры, давления и конструкции аппарата, В результате очистки воды получается 5—20 % раствор солей и вода, которая по своим свойствам чаще всего удовлетворяет санитарным и технологическим требованиям [5,22, 5.24, 5.55, 5.64]. [c.475]

    Ионный обмен — это процесс, в котором твердый ионит реагирует с раствором электролита, обмениваясь с ним ионами. Такой обмен происходит в природе, в живом организме ионообменные процессы имеют важное значение и в технике, где иониты применяют для очистки растворов, для улавливания ценных металлов, для разделения различных веществ. Иониты используют в аналитической, биологической и препаративной химии они являются катализаторами многих органических реакций. Возможность ионитов влиять на органические реакции обусловлена наличием в них подвижных ионов или ОН", поэтому иониты могут быть использованы вместо растворенных электролитов в жидкофазных реакциях кислотно-основного катализа. Существенное отличие катализа ионитами от истинного гомогенного катализа в свободном растворе состоит в том, что реакция происходит в ионите и, таким образом, связана с диффузией веществ в ионит и продуктов реакции — из ионита. Кроме того, на реакцию может влиять каркас ионита и ионогенные группы, закрепленные в нем  [c.142]

    Катодное восстановление используется при очистке сточных вод, содержащих трудноокисляемые органические соединения или ионы металлов РЬ +, 50 +, Hg2+, Сц2+, As +, Сг +, причем металлы осаждаются на катоде и могут быть рекуперированы. Например, при восстановлении соединений хрома концентрация его в воде снижалась с 1000 до 1 мг/л. [c.495]

    Радиационное окисление [5.5, 5.20]. Метод основан на воздействии ионизирующего излучения (V и р-лучи, ускоренные электроны, ускоренные ионы, нейтроны и др.) на обезвреживаемое соединение с получением ионов и возбужденных молекул, которые затем участвуют в реакциях. При действии излучений высоких энергий на разбавленные водные растворы органических соединений возникает большое число окислительных частиц, обусловливающих радикальное окисление. Полнота разложения соединений зависит от вида соединения, его начальной концентрации, продолжительности облучения и температуры стоков. Так, при очистке сточных вод от фенола с начальной концентрацией 100,0 мг/л разложение на 100% происходит через 1,5 ч, а при концентрации 10 мг/л — за 0,33 ч. [c.497]

    Дейтерообмен. Результаты опытов [11], в которых происходил обмен дейтерия из бромистого дейтерия с атомами водорода бутанов при изомеризации в присутствии бромистого алюминия, подтвердили механизм цепной реакции с образованием иона карбония. Предполагается, что обмен происходит в то время, когда бутаны находятся в виде соответствующих ионов карбония. При. тщательной очистке от олефинов обмен происходил в ничтожно малой степени. [c.19]

    Изомеризация, по-видимому, протекает через ионные цепные реакции. Механизм изомеризации изучался с применением техники высоковакуумной очистки реагентов и добавления следов загрязнений , действующих в качестве ингибиторов реакции. Применение оптически активных углеводородов, а также углеводородов, содержащих изотопы водорода или углерода, сильно помогло в выяснении механизма изомеризации. [c.52]

    В настоящее время лимонная кислота для химических очисток используется лишь в редких случаях. Но ранее, начиная с 1964—1966 гг., ее широко применяли в виде моноцитрата аммония для предпусковых химических очисток блоков сверхкритических параметров и пароперегревателей барабанных котлов с давлением 14 МПа. Стремление сократить большие расходы дефицитной пищевой лимонной кислоты без уменьшения эффективности химических очисток привело к созданию в СССР композиций лимонкой кислоты с комплексонами для использования как при предпусковых, так и при эксплуа гаи,ионных очистках. В дальнейшем проблема дефицитности лимонной кислоты вынудила и для композиций вести исследования как по сокращению ее расходования (исследование оптимальных соотношений лимонной кислоты и комплексона), так п по возможности полной замены лимонной кислоты в композициях другими более дешевыми и менее дефицитными органическими кислотами. К настоящему времени использование кислоты, причем, безусловно, только в виде моноцитрата аммония, весьма ограничено (во всяком случае для пищевой лимонной кислоты). Использование лимонной кислоты допустимо, например, при химической о.чистке поверхностей нагрева из аустенитной нержавеющей стали, при эксплуатационной и, особенно, предпусковой очистке блоков сверхкритических параметров. В отдельных случаях моноцитрат аммония может [c.9]

    Разработка установок — комбайнов, сочетающих несколько методов и оборудованных вычислительных техникой, что позволяет производить измерения и анализ химических, геометрических, электронных и других свойств. Определяется переход от уникальных лабораторных установок к установкам, выпускаемым снециализи-рованиыми фирмами можно говорить о создании индустрии научного приборостроения, В качестве примера на рис. 3.29 приведен общий вид установки, в составе которой имеются Оже-снектрометр, рентгеновский электронный спектрометр, ионный микроскоп, электронный микроскоп на вторичных электронах с разрешением -З О мкм, Оже-микроскоп для элеметного анализа с разрешением до 1 мкм, ионная очистка, прибор для дифракции электронов и т, д. Установ- [c.148]

    Избирательная гидрогопизаи,ионная очистка крекинг-бензинов при эквимолекулярном отношении Бодородсодержащего газа и крекинг-бензина для максимального пасыщения сопряженных диенов при малом сопутствующем насыщении моноолефинов [c.463]

    В настоящ,ее время нет универсального метода очистки поверхности химических соединений от чужеродных пленок. Ионная очистка может быть эффективной лить в случае металлов, поскольку большинство химических соединений изменяет свой состав под воздействием иолной бомбардировки (см. гл. 3 4в [13]). Вследствие этого возникают две проблемы во-первых, получение или сохранение чистых поверхностей во-вторых,, контроль состава поверхности исследуемого образцаГ. Для получения чистых поверхностей веществ, склонных к  [c.27]

    Вся установка смонтирована на сварном каркасе, закрытом легкосъемными кожухами. В качестве рабочей камеры установки используется вакуумный колпак объемом 0,12 м , выполненный из нержавеющей стали. На наружной поверхности колпака имеется змеевик, предназначенный для охлаждения и прогрева его соответственно холодной или горячей водой. Подъем колпака осуществляется при помощи гидравлического механизма вакуумноплотное соединение основания колпака с базовой плитой достигается с помощью резиновой прокладки. На колпаке размещены два смотровых окна, игольчатый натекатель и кран для напуска воздуха. На базовой плите размещены карусель испарителей на пять позиций, заслонка с электромагнитным приводом и высоковольтный ввод. К базовой плите подсоединяется откачная вакуумная система. В случае необходимости в рабочем объеме установки могут быть размещены карусели подложек и масок, электроды ионной очистки, нагреватели подложек и др. Для этой цели на колпаке предусмотрены подсоединительпые фланцы, а на базовой плите — резьбовые гнезда для крепления стоек. [c.269]

    Устройства ионной очистки и магратроны оснащены нате-кателями для напуска рабочих газов. Так как давление и состав атмосферы в рабочей камере 4 и камере распыления 8 различны, они для прохождения цепей конвейера соединяются друг с другом каналами, имеющими малую пропускную способность для газовых потоков. Это обеспечивает перепад давлений в камерах на два порядка. При давлении аргона 1,3 Па в камере распыления в рабочей камере поддерживается давление 5 10 Па. [c.93]

    Обработка среды включает в себ5[ все способы, уменьшающие концентрацию ее компонентов, особенно опасных в коррозионном отношении. Так, например, в нейтральных солевых средах и пресной воде одним из самых агрессивных компонентов является кислород. Его удаляют деаэрацией (кипячение, дистилляция, барботаж инертного газа) или связывают при помощи соответствующих реагентов (сульфиты, гидразин и т. п.). Уменьшение концентрации кислорода должно почти линейно снижать предельный ток его восстановления, а следовательно (см. рис. 24.7), и скорость коррозии металла. Агрессивность среды уменьшается также при ее подщелачивании, снижении общего содержания солей и замене более агрессивных ионов менее агрессивными. При противокоррозионной подготовке воды для уменьшения накипеобразования широко применяется ее очистка ионообменными смолами. [c.507]

    Эффективность очистки флотацией значительно увеличивается, если с целью интенсификации образования комплексов пузырек — частица в воду вместе с воздухом добавить различные реагенты, увеличивающие гидрофобизацию поверхности частиц, дисперсность и устойчивость газовых пузырьков. В качестве коагулянтов, образующих микрохлопья, всплывающие с захваченными ими частицами загрязнений в виде пены, исиользуют соли аммония и железа (лучше хлорид железа (П1) и хлорид алюминия, которые не увеличивают содержания сульфат-ионов в оборотной воде). Степень очистки безреагентной флотацией — всего 11—23%- [c.94]

    Сорбция ионов сильных электролитов на угле обусловлена наличием на его поверхности химически активных адсорбированных газов. Ионообменные свойства углей имеют важное значение для правильного установления технологического режима очистки сточных вод от ПАВ, поскольку катионоактнвные и анионоактивные ПАВ в определенных условиях ведут себя как электролиты. Степень извлечения ПАВ, проявляющих свойства электролитов, тем больше, чем меньше их степень диссоциации. Последнюю можно регулировать изменениелг pH среды или солесодержанием, а также добавлением неорганических электролитов. [c.216]

    Сорбционную очистку сточных вод от ПАВ с помощью ионообменных смол широко применяют для очистки промышленных сточных вод. Р1онообменные материалы — твердые, не растворимые в воде вещества, в структуру которых входят группы атомов, песуииш электрический заряд, скомпенсированный подвижными ионами иротивополож1юго знака. Эти противоионы способны замещаться поиамп того же знака, находящимися в растворе. Ионообменные процессы с участием ПАВ отличаются рядом специфических свойств, не характерных для ионного обмена неорганических веществ  [c.219]

    Интерес исследователей к ионитам объясняется большими преимуществами этих агентов перед другими кислотными катализаторами. Например, ионит легко отделять от продуктов реакции простым фильтрованием, тогда как в гомогенном катализе для удаления кислотного катализатора требуется отмывка водой, приводящая к образованию сточных вод кислотного характера, или высоковакуумная отгонка, значительно усложняющая производство. Иониты можно использовать многократно. В реакциях ионообменного катализа во многих случаях почти совсем исключаются побочные процессы, что значительно сокращает расход сырья, удешевляет процесс и упрощает очистку продукта. Одним из важейших достоинств ионообменного катализа является отсутствие агрессивных сред, поэтому синтез можно вести в аппаратах, не требующих защиты от коррозии. [c.146]


Библиография для Иониты очистка: [c.293]   
Смотреть страницы где упоминается термин Иониты очистка: [c.127]    [c.113]    [c.337]    [c.295]    [c.93]    [c.56]    [c.215]    [c.216]    [c.469]    [c.108]    [c.218]   
Ионообменные разделения в аналитической химии (1966) -- [ c.151 ]




ПОИСК







© 2025 chem21.info Реклама на сайте