Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фиг вязкости на рост кристаллов

    Седиментометрические и реологические исследования, а также поляризационная микроскопия позволили объяснить действие ультразвука на процесс кристаллизации твердых углеводородов при депарафинизации и обезмасливании. При обработке суспензий твердых углеводородов ультразвуком разрушаются связи между кристаллами твердых углеводородов, что приводит к разрушению образованной ими пространственной структуры при дальнейшем охлаждении эта структура не восстанавливается. Сами же кристаллы парафина при обработке ультразвуком почти не разрушаются. В результате резко снижается структурная вязкость системы и исчезает динамическое предельное напряжение при сдвиге. Все это создает условия для роста кристаллов с образованием агрегатов, обусловливающих высокие скорость и четкость отделения твердой фазы от жидкой, что приводит к увеличению скорости фильтрования, выхода депарафинированного масла и снижению содержания масла в твердой фазе. Однако применение метода ультразвуковой обработки суспензий твердых углеводородов при депарафинизации и обезмасливании пока не вышло из стадии лабораторных исследований. [c.163]


    Количество необходимого растворителя прямо пропорционально вязкости масла, подвергаемого депарафинизации. Недостаточное разбавление масла затрудняет рост кристаллов твердых парафинов и церезинов, а чрезмерное разбавление приводит к их частичному растворению. Для маловязких масел объем растворителя принимают равным 1,5 объема масла, а для высоковязких масел—до 5 объемов. Растворитель должен обладать селективностью по отношению к твердым парафинам и церезинам, обеспечивать минимальный температурный градиент депарафинизации (разность между температурой растворения и температурой застывания депарафи-нированного масла) способствовать образованию достаточно крупных и легко отделяемых при фильтровании кристаллов парафинов и церезинов иметь низкую тем- [c.128]

    Поверхностно-активные вещества (депрессорные присадки, добавляемые в топливо сернистые и кислородные соединения, содержащиеся в нем) препятствуют росту кристаллов парафиновых углеводородов и увеличивают разрыв между температурами начала кристаллизации и застывания. С увеличением вязкости топлив разность между температурами начала кристаллизации и застывания уменьшается. Температура застывания топлив ориентировочно характеризует ту минимальную температуру, при которой еще обеспечивается транспортировка или перекачка их. Температура начала кристаллизации топлив в основном характеризует температуру их фильтрации (рис. 3. 1 и 3. 2). Скорость забивки фильтра кристаллами парафина зависит от типа фильтра и размера его пор, перепада давления, концентрации кристаллов в топливе, их величины и формы. [c.137]

    Суммарная скорость кристаллизации зависит от соотношения скоростей обеих стадий кристаллизации и в общем случае определяется скоростью диффузии молекул к центрам кристаллизации, молекулярной и пространственной структурой сырья,температурой и длительностью процесса и др. Возможны три варианта соотношения скоростей а) скорость диффузии молекул к центрам кристаллизации больше скорости роста размеров кристаллов б) скорость роста размера кристаллов примерно равна скорости диффузии молекул к центрам кристаллизации в) скорость диффузии молекул к центрам кристаллизации лимитируется вязкостью системы и меньше скорости роста кристаллов углерода. При достижении укрупненными центрами кристаллизации (сложными структурными единицами) порога осаждения система расслаивается на фазы (третья стадия). [c.158]


    Рассмотрим влияние степеней пересыщения (с — Со) и переохлаждения (—Лt) на скорость роста кристаллов. По последнему уравнению эта скорость пропорциональна с — Со при высоких степенях пересыщения такая зависимость дает большие отклонения. Получается характерный ход зависимости скорости роста кристалла от степеней пересыщения или переохлаждения (рис. У-34). При слишком быстром переохлаждении можно вообще затормозить рост кристаллов. Раствор приобретает очень высокую вязкость, придавая твердому веществу свойства стекла. [c.399]

    Как мы указывали выше, смолы являются смесью различных групп соединений, каждая из которых по-разному может влиять на кристаллизацию выделяющихся из нефтяных фракций углеводородов, Кроме того, наличие большого количества смол в нефтях и особенно в мазутах резко увеличивает вязкость среды, что, как известно, затрудняет рост кристаллов. Наконец, смолы являются веществами, понижающими температуру застывания нефтепродуктов. К этому вопросу мы вернемся далее, когда будем рассматривать механизм действия присадок, понижающих температуру застывания масла. [c.102]

    Кристаллизация твердых углеводородов и рост кристаллов зависят, как известно, от различных причин, к которым относятся а) характер твердых углеводородов, б) вязкость раствора масла в растворителе, в) температура предварительной термической обработки, г) скорость охлаждения. [c.209]

    С повышением температурных пределов выкипания фракции растет ее вязкость, что существенно влияет на процесс кристаллизации твердых углеводородов, затрудняя их диффузию к образовавшимся центрам кристаллизации. В результате образуются новые зародыши кристаллов, уменьшая тем самым размеры конечных кристаллов. Таким образом, для обеспечения нормального роста кристаллов необходим оптимум концентрации твердых углеводородов в растворе и вязкости последнего. [c.168]

    Температура кристаллизации в общем оказывает положительное влияние на скорость роста кристаллов. При более высокой температуре сни-жаетсй вязкость раствора и, следовательно, облегчается диффузия. Однако в большей степени влияние температуры отражается на увеличении числа зародышей, что, как известно, приводит к образованию более мелких кристаллов. При положительной растворимости с повышением температуры кристаллизации уменьшается степень пересыщения раствора, что, в свою очередь, вызывает снижение движущей силы процесса. [c.636]

    Скорость вращения суспензии при кристаллизации (в результате механического воздействия мешалки) является одним из важнейших факторов, определяющих размер получаемых кристаллов (см. также гл. 9). Обработка данных (табл. 4.7) для одной и той же мешалки [128] с учетом Уо, Л и фа показывает, что уменьшение размеров кристаллов при усилении перемешивания наблюдается для тех веществ, которые в растворе характеризуются меньшим коэффициентом активности, а твердая соль — большим структурным показателем. Кроме того, значение фц становится больше, а Ата, наоборот, уменьшается. При исследовании влияния перемешивания на кристаллизацию до сих пор уделяли внимание главным образом частоте вращения мешалки, без учета указанных физико-химических характеристик раствора и твердого вещества. Согласно [202], имеется взаимосвязь между линейной скоростью роста кристалла, интенсивностью перемешивания и рядом таких физических характеристик раствора и растущего кристалла, как коэффициент диффузии О, вязкость т), плотность раствора рр и твердой фазы р. . [c.110]

    Увеличение переохлаждения приводит к росту вязкости жидкой фазы. В расплавах веществ, в которых скорости образования зародышей и роста кристаллов очень малы, а вязкость жидкости при охлаждении резко увеличивается, кристаллизация вообще может не начаться — плав превращается в твердую аморфную массу (стекло). Температура, ниже которой кристаллизация не происходит, называется температурой стеклования. [c.261]

    Скорость диффузии к месту кристаллизации, а следовательно, и роста кристаллов в значительной степени зависят от вязкости среды и возрастают с уменьшением вязкости. [c.227]

    Так как в большинстве случаев растворимость кристаллизующихся веществ понижается с понижением температуры, то для образования кристаллов и выделения их из растворов прибегают к понижению температуры раствора, что, однако, приводит также к повышению вязкости и к замедлению скорости образования кристаллов. Если жидкость, в которой растворено кристаллизующееся вещество, обладает при температуре кристаллизации сравнительно высокой вязкостью, то для снижения вязкости системы и создания условий для более быстрого роста кристаллов применяют специальные растворители, понижающие вязкость среды. [c.227]

    Оптимальная скорость охлаждения, обеспечивающая наиболее благоприятные условия роста кристаллов, зависит от свойств кристаллизующегося вещества, вязкости среды, применяемых растворителей, их расхода и устанавливается из опыта. Оптимальная скорость охлаждения должна поддерживаться нри температурах ниже температуры начала кристаллизации. [c.228]


    Вязкость нефтяных остатков при высоких температурах изменяется по сложной зависимости по мере увеличения концентрации дисперсной фазы она непрерывно возрастает. Только при замедлении скорости перехода системы из аномального жидкого состояния в твердое до оптимального ее значения, когда вязкость обеспечит диффузию молекул к центрам кристаллизации, возможен рост крупных кристаллов. При одних и тех же условиях (получения нефтяного углерода соответствие между указанными скоростями и ростом кристаллов создается подбором сырья определенной молекулярной структуры (крекинг-остатки дистиллятного происхождения, ароматические концентраты). В температурном интервале перехода системы из состояния с критическим напряжением сдвига предельно разрушенной структуры Рг к состоянию с критическим напряжением сдвига необратимо твердеющей системы Рд возможен, интенсивный рост кристаллов углерода с анизотропными свойствами. Величина температурного интервала зависит от температуры процесса перехода. При высоких температурах этот интервал минимален, что существенно ограничивает рост кристаллов. Он минимален также при использовании сырья, со- [c.47]

    На базе ур-ний для функций Р(д,1) строят кинетич. ур-ния для л-частичных ф-ций распределения, к-рые получают путем усреднения по расположениям всех остальных N — п) частиц. Для малых л кинетич. ур-ния м. б. решены аналитически или численно и с их помощью м. б. получены коэф. диффузии, самодиффузии, сдвиговой вязкости, подвижности и т. п. Такой подход применим к процессам переноса в-ва в моноатомных кристаллах, сплавах, оксидных кристаллах, ионитах и т.д., к процессам переноса в-ва через границу с твердым телом, роста кристаллов, фазовым превращениям и т. п. Для межфазного переноса, из-за различий в характерных временах протекания элементарных процессов миграции частиц, важную роль играет вид граничных условий на границах раздела фаз. [c.420]

    Тот факт, что слишком сильное охлаждение часто препятствует кристаллизации, в большой степени объясняется увеличением вязкости, которая тормозит правильную ориентацию молекул вещества друг относительно друга и относительно уже имеющейся поверхности кристалла. Действительно, было показано, что линейная скорость роста кристаллов обратно пропорциональна вязкости жидкости. [c.57]

    Скорость осаждения кристаллов зависит от скорости охлаждения топлива, интенсивности его перемешивания, сонцентрации парафиновых углеводородов в топливе, его вязкости и наличия в нем поверхностно-активных веществ [17]. Поверхностно-активные вещества (депрессорные присадки, серу- и кислородсодержащие соединения) препятствуют росту кристаллов парафиновых углеводородов и увеличивают разрыв между температурами начала кристаллизации и застывания. [c.31]

    Потеря подвижности может быть вызвана либо повышением вязкости нефтепродукта, либо образованием множества кристаллов парафина и церезша и загустеванием всей системы. В парафинистых тяжелых нефтепродуктах по мере понижения температуры кристаллы образуют сетку — кристаллический каркас. Не застывшая часть нефтепродукта находится внутри сетки и таким образом делается неподвижной. Форма выделяющихся кристаллов зависит от химического состава углеводородной среды, скорость их роста — от вязкости среды, содержания и растворимости парафиновых углеводородов нри данной температуре и скорости охлаждения системы. Скорость роста кристаллов прямо пропорциональна концентрации [c.82]

    Присутствие жидких малоциклических ароматических углеводородов из-за наличия в их молекулах коротких боковых цепей не влияет на структуру и размер кристаллов парафиновых углеводородов. Повышенное их содержание приводит к увеличению размеров этих кристаллов вследствие уменьшения концентрации последних в растворе, что связано с облегчением условий роста кристаллов. Полициклические ароматические углеводороды в концентрации >25% (масс.) на смесь способствуют уменьшению размеров кристаллов парафинов, что объясняется повышением вязкости раствора, из которого проводится кристаллизация. Процесс кристаллизации твердых углеводородов из полярных и неполярных растворителей протекает в форме монокристаллических образований образуется структура, состоящая из кристаллов определенной формы, причем каждый монокристалл развивается из одного и того же центра. При такой форме кристаллизации отдельные кристаллы могут быть как разобщены между собой, так и образовывать в растворе пространственную кристаллическую решетку. С помощью электронного микроскопа при увеличении в 13 000 раз удалось проследить практически все стадии роста кристаллов от момента возникновения зародышей (центров кристаллизации) до полностью оформленного кристалла [25, 26]. Такое постадийное изучение процесса роста кристаллов проведено на примере пента-контана ( пл = 93°С) при кристаллизации в углеводородной среде (рис. 39, а—г). [c.131]

    Твердые углеводороды масляных фракций нефти, как указывалось выше, относятся к изоморфным и в то же время полиморфным веществам, которые в зависимости от условий кристаллизации и фракционного состава сырья в процессах депарафинизации и обезмасливаиия могут образовывать смешанные кристаллы, эвтектические смеси или кристаллизоваться раздельно. Образование кристаллов той или иной формы, а также эвтектических смесей имеет большое значение с точки зрения отделения твердой фазы от жидкой. Для обеспечения нормального роста кристаллов необходимы оптимумы концентрации твердых углеводородов в растворе и вязкости последнего. [c.150]

    Порционная подача растворителя эффективна при депарафинизации и обезмасливании дистиллятного сырья, причем широкого фракционного состава. При депарафинизации рафинатов узкого фракционного состава или остаточных [32, 59] такой способ подачи растворителя менее эффективен в силу большей однородности состава твердых углеводородов и сравнительно низкого содержания в остаточном сырье углеродородов парафинового ряда. Содержащиеся в нем твердые циклические углеводороды образуют мелкие кристаллы смешанного типа. В то же время лабораторные исследования [55] изменения структурной вязкости суспензий твердых углеводородов остаточного рафината в растворе ацетон (35%)—толуол (65%) показали, что в зависимости от способа подачи растворителя структурная вязкость суспензии изменяется в широких пределах (рис. 52). Это объясняется тем, что при небольшом пересыщении раствора в начальный момент охлаждения на образовавшихся центрах кристаллизации начинается рост кристаллов, при этом вязкость суспензии почти не изменяется. [c.151]

    Оценим кинетические константы. Для каждого падающего кристалла можно построить зависимость v=v i) и определить величину dvldt с точностью до малых первого порядка dvldt Lv—Подставив dvldt в уравнения (3.185), (3.186), можно разрешить их относительно диаметра сферы, масса которой совпадает с массой падающего кристалла. Подставив найденные значе- ния а в уравнения (3.185), (3.186), легко получить значения для скоростей роста кристаллов в соответствующих временных точках. Однако в нашу задачу входит не только определение скоростей роста по длине трубы, но и определение влияния на скорость роста кристалла пересыщения, температуры раствора, скорости обтекания кристалла раствором, вязкости и плотности среды, окружающей его. Если кристаллизация идет во внешней области (диффузионной), то массовую и линейную скорости роста кристалла можно представить в виде [c.295]

    Характер кристаллизации парафинов (церезинов) при охлаждении топлив и масел зависит от скорости зарождения кристаллизационных центров н скорости рост.з кристаллов. Чем ниже температура, тем выще скорость зарождения центров кристаллизации, но меньше скорость роста кристаллов. Поэтому обычно при относительно высоких температурах образуется небольшое число крупных кристаллов, а при низких темпеэатурах— много мелких. Кроме того, на кристаллизацию оказывают Е лияние свойства кристаллизующихся компонентов (температура и теплота плавления) и среды (вязкость) их растворимость в данной нефтяной фракции наличие в составе нефтепродукта поверхностно-активных веществ и различных примесей скорость охлаждения нефтепродукта, степень перемешивания и разность между температурой нефтепродукта и температурой насыщения. [c.52]

    Наибольшее раслространение при очистке масляных фракций получил метод кристаллизации с использованием растворителей. Чтобы полно извлечь из рафинатов селективной очистки твердые парафины, необходимо глубоко охладить сырье. Однако при охлаждении заметно увеличивается вязкость рафината, а это затрудняет рост кристаллов парафинов. Было установлено, что добавление растворителя позволяет, не повышая вязкости сырья, глубоко охладить его и тем самым обеспечить выделение парафинов. [c.327]

    Для обеспечения периодического роста кристаллов необходимо оптимальное сочетание концентращ1и твердых углеводородов и вязкости раствора. Рост кристаллов твердых углеводородов происходит постадийно, следовательно, йля каждой стадии роста существует свое оптимальное соче- [c.13]

    При замерзании водной фазы эмульсии типа М/В появляются кристаллы льда, которые выталкивают шарики масла в сужающиеся каналы незамерзшей жидкости (Янг, 1934). При этом концентрация электролитов в еще незамерзшей воде увеличивается, вода все более переохлаждается, электрический заряд эмульсии уменьшается (Боросихинои др., 1961). В результате роста кристаллов льда шарики масла сжимаются, вытягиваются в нити и соединяются. Согласно Лебедеву и др. (1962), последующие процессы зависят от условия контакта поверхности шарика и адсорбционного слоя эмульгатора. Когда вязкость поверхности шарика достигает вязкости твердого вещества, гидрофобная часть адсорбированных молекул эмульгатора теряет свою подвижность. Это предотвращает деформированные шарики масла, находящиеся под давлением кристаллов льда, от восстановления. В той части поверхности шарика, которая не защищена эмульгатором, начинается коалесценция, зависящая от природы эмульгатора (Поспелова и др., 1962), его концентрации, степени покрытия эмульгатором поверхности шарика и от природы дисперсной фазы (Кист-лер, 1936). Длина гидрофобной [c.125]

    Для кристаллизации полимеров в равновесных условиях их надо подвергнуть переохлаждению. Скорость кристаллизации чистого полимера определяется произведением скоростей двух процессов зародышеобразования и роста кристаллов. Скорости зароды-шеобразования высоки при низких температурах, когда полимерные цепи находятся на низком энергетическом уровне. С другой стороны, высокие температуры кристаллизации благоприятствуют высоким скоростям роста кристаллов это связано с тем, что цепи, участвующие в кристаллизации, должны извлекаться из расплава и перемещаться к поверхностям кристаллообразования. Повышение температуры, снижая вязкость, увеличивает подвижность цепей и скорость роста кристаллов. [c.54]

    Скорость роста кристалла сложным образом зависит от температуры. Чем ниже температура расплава или раствора, тем ныше степень его переохлаждения и пересыщения и, казалось бы, больше скорость образования зародышей и роста кристаллов. Однако в действительности эта скорость возрастает до некоторого максимума, после чего понижается вследствие увеличения вязкости среды и уменьшения скорости дкнження мо- 1екул. [c.245]

    На неравномерный рост кристаллов в предельных условиях влияет еще один фактор—повышение вязкости растворов. Образующиеся в прикатодных слоях вследствие защелачи,вания католита плохо растворимые гидроокиси и основные соли металлов, скапливаясь вблизи граней кристаллов, сильно затрудняют диффузию питательного вещества к отдельным участкам кристаллической решетки и тем самым вызывают прекращение роста участков, находящихся в более угнетенных условиях. [c.382]

    Выбор условий депарафинизации. Увеличение вязкости депа-рафинируемого сырья требует большое количество растворителя, чтобы уменьшить вязкость раствора и таким образом создать благоприятные условия для роста кристаллов парафинов и способствовать большей скорости фильтрации. Однако с увеличением разбавления растворителем возрастает количество растворенного в нем парафина (церезина) после отгонки растворителя эти твердые углеводороды останутся в масле, вследствие чего снизится эффект депарафинизации, так как возрастет температура застывания готового масла. [c.371]

    При понижении температуры повышается вязкость электролита и замедляется процесс роста кристаллов РЬ304, они становятся более мелкими и, следовательно, пассивация растет. [c.482]

    Скоросуь роста кристаллов зависит от большого числа факторов, из которых важнейшими являются вязкость среды, скорость охлаждения, интенсивность перемешивания, концентрация кристаллизующегося вещества, растворимость и свойства данного вещества и др. [c.226]

    В промышленных кристаллизаторах непрерывного действия образование и рост кристаллов происходят одиовремепно. Относительные скорости образования и роста определяют распределение получаемых кристаллов по размерам. Данные об этих скоростях, пригодные для проектных расчетов, практически отсутствуют. Однако детальное рассмотрение процесса позволяет сделать некоторые выводы, подтвержденные опытом эксплуатации промышленных кристаллизаторов. При низких степенях пересыщення растворов рост кристаллов преобладает над их образованием и поэтому получаются крупные кристаллы. При высоких степенях пересыщения существует обратная зависимость и получаются мелкие кристаллы. Как правило, для получения крупных кристаллов требуется низкая степень пересыщения, так как в противном случае независимо от типа применяемого оборудования и режима работы образуется слишком большое число ядер кристаллизации. Это неизбежно ведет к снижению производительности кристаллизаторов и необходимости в круппогабаритном оборудовании. Следовательно, задача сводится к достижению максимальной ироиз-водительности кристаллизаторов, совместимой с низкой скоростью образования ядер кристаллизации. Тип применяемого кристаллизационного оборудования, скорость перемешивания, температурный градиент, вязкость жидкой фазы й другие факторы определяют в весьма сложной форме степень пересыщения, которая допустима при необходимости получения крупных кристаллов. Однако оптимальный режим, требуемый для получения кристаллов заданных размеров, может быть выбран только па основе производственного опыта. [c.70]

    Суспендированные жидкие комплексные удобрения характеризуются присутствием твердой фазы. Для предупреждения роста кристаллов и выделения их в осадок при хранении в такие удобрения вводят стабилизирующие добавки, увеличивающие вязкость растворов, препятствующие росту кристаллов и уменьшающие скорость их осаждения. В качестве стабилизирующих добавок рекомендуют применять аттапульгитовую глину, бентонитовую глину 73, 131,132 аэросил-175, нефелиновый шлам и др. Для приготовления суспендированных жидких удобрений используются те же компоненты, что и для обычных жидких удобрений (экстракционная фосфорная кислота, полифосфорные кислоты, аммиак, карбамид, нитрат аммония, хлористый калий и др,). Имеются также указания на возможность приготовления устойчивых суспендированных удобрений без применения стабилизирующих добавок при условии соблюдения определенного режима их приготовления В настоящее время за рубежом производят суспендированные удобрения на небольших промышленных установках как по холодному , так и по горячему способам выпускают различные марки этих удобрений с общим содержанием питательных веществ 36-—45%, что на много превышает содержание их в обычных жидких удобрениях >34-137  [c.643]

    Порпионная подача растворителя является эффективным способом создания благоприятных гидродинамических условий для роста кристаллов парафинов путем регулирования вязкости и концентрации фаз дисперсной системы в процессах депарафинизации и обезмасливания. При порционной подаче растворителя создаются условия для раздельной кристаллизации высоко- и низкоплавких парафинов. При первом разбавлении сырья часть растворителя подается в количестве, достаточном для образования первичных наиболее крупных кристаллов из высокоплавких парафинов нормального строения. При дальнейшем охлаждении ряствпря с подачей следующей порции растворителя осуществляется кристаллизация на первичных кристаллах более низкоплавких компонентов, в состав которых могут входить низкомолекулярные н-алканы, изоалканы и циклические углеводороды. Такой способ подачи растворителя позволяет не только повысить скорость фильтрования и выход депарафинизата, но и проводить процесс с большей скоростью охлаждения. [c.311]

    Отложим пока анализ показателя т и вспомним, что для кристаллизации полимеров необходимо некоторое переохлаждение. Это обстоятельство не только сдвигает область кристаллизации влево по оси температур по сравнению с областью плавления, но и дополнительно расширяет ее (прежние причины размазывания фазового перехода также остаются в силе). Характер температурной зависимости скорости кристаллизации v можно понять из следующих соображений. При Т кристаллизация невозможна (и = 0). С увеличением степени переохлаждения ЛГ = rUj, — скорость V должна была бы все возрастать, но тут всту пает в игру другой фактор вязкость расплава, которая тоже резко возрастает с увеличением АГ. Но так как процессы нуклеации и роста кристаллов контролируются диффузией, а скорость диффузии звеньев или сегментов обратно пропорциональна вязкости, то это должно вызвать уменьшение V при увеличении АГ. Комбинация двух противоположных тенденций приводит к появлению колоколообразной кривой (рис. П1. 10), причем V обращается в нуль при и а максимуму соответствует примерно О.ВГпл правило Годовского [48]). [c.103]


Смотреть страницы где упоминается термин фиг вязкости на рост кристаллов: [c.259]    [c.133]    [c.231]    [c.76]    [c.349]    [c.17]    [c.70]    [c.277]    [c.278]    [c.285]   
Физическая химия силикатов (1962) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Рост кристаллитов

Рост кристаллов



© 2025 chem21.info Реклама на сайте