Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лизин гормонах

    Биохимия его действия заключается в функционировании ферментов, катализирующих гидроксилирование лизина и пролина при образовании коллагена в гидроксилировании дофамина с образованием норадреналина в метаболизме холестерина (возможно, что также реакциями гидроксилирования) в метаболизме катехоламинов и стероидных гормонов в предохранении глутатиона и 5Н-групп белков от окисления в восстановлении [c.270]


    По данным Л. К. Эрнста (1996), у трансгенных свиней с геном рилизинг-фактора гормона роста (РФ ГР) конечная живая масса была на 15,7 % выше по сравнению с контрольными животными. У потомства трансгенных свиней, получавших модифицированный кормовой рацион с повышенным содержанием белка (18% сырого протеина) и с дополнительным количеством лизина, отмечались более высокие среднесуточные привесы (на 16,5 %). [c.129]

    Биологическая роль. Витамин С, вероятнее всего, участвует в окисли-тельно-восстановительных процессах, хотя до сих пор не выделены ферментные системы, в состав простетических групп которых он входит. Предполагают, что витамин С участвует в реакциях гидроксилирования пролина и лизина при синтезе коллагена, синтезе гормонов коры надпочечников (кортикостероидов), аминокислоты триптофана и, возможно, в других реакциях гидроксилирования. Имеются доказательства необходимости участия витамина С в окислительном распаде тирозина и гемоглобина в тканях. [c.239]

    Исследование экскреции аминокислот привело уже к открытию ряда интересных нарушений при различных патологических состояниях, в том числе при некоторых относительно редких заболеваниях возможно, однако, чт-о менее резкие изменения экскреции аминокислот сопутствуют и другим заболеваниям. Такого рода явления теперь доступны изучению благодаря усовершенствованию методов определения аминокислот. При этом, однако, следует строго контролировать все условия (особенно питание). Регулирование уровня аминокислот в крови происходит при участии гормонов (стр. 179) вполне вероятно, что их действие отражается и на экскреции аминокислот. Так, при введении кортизона больным с ревматоидным артритом у них наблюдалась повышенная экскреция аминокислот [105]. Имеются также данные о сравнительно регулярных изменениях экскреции ряда аминокислот у женщин в связи с половым циклом. Так, у женщин во время беременности повышается экскреция гистидина, треонина, лизина и триптофана, тогда как в период лактации экскреция аминокислот относительно понижена [106]. [c.470]

    Витамин С Аскорбиновая кислота Участвует в окисли-тельно-восстанови-тельных реакциях. Особенно велика роль в гидроксилировании аминокислот пролина и лизина соответственно в оксипролин и оксилизин при синтезе белка коллагена, а также в синтезе гормонов надпочечников Цинга Цитрусовые, красный перец, смородина, рябина, клюква, квашеная капуста, хвоя 50-100 мг [c.92]

    Часть аминокислот транспортируется к другим органам и тканям, где они идут на образование тканевых белков, ферментов, гормонов. Каждый белок организма имеет присущий только ему аминокислотный состав. Поэтому для синтеза белков необходим определенный ассортимент аминокислот. В первую очередь требуются аминокислоты, которые в организме животного не образуются. Эти аминокислоты называются незаменимыми. К ним принадлежат лизин, валин, лейцин, изолейцин, метионин, треонин, фенилаланин, триптофан, гистидин, аргинин. У птиц незаменимыми аминокислотами могут быть глицин и серин, особенно в период их интенсивного роста. [c.121]


    Вазопрессин, выделенный из гипофиза свиньи, отличается от вазопрессина крупного рогатого скота тем, что вместо аргинина имеется лизин, т. е. имеет место видовое различие в структуре этих гормонов. [c.197]

    Применение многочисленных и разнообразных химических препаратов в животноводстве и растениеводстве, базирующееся на данных биохимии и физиологии, способствует подъему продуктивности указанных отраслей селы кого хозяйства и производительности труда. Особенно важно полное удовлетворение потребностей сельского хозяйства в микроэлементах, витаминах, белковых добавках (в виде кормовых дрожжей и белково-витаминных концентратов), синтетических аминокислотах (треонин, триптофан, лизин) и кормовых антибиотиках, а также производство высокоэффективных и экологически безопасных средств защиты растений, в том числе инсектицидов 3-го и 4-го поколений, созданных в результате изучения регуляторов роста насекомых—гормонов (экдизона и ювенильных гормонов) и антигормонов. [c.9]

    В первом из них есть остатки лизина, глицина и серина, которых нет во втором. В то же время во втором есть остатки изолейцина, аспарагиновой кислоты и тирозина, которых нет в первом. Эти два вещества существенно различаются по химическим свойствам и разительно — по биологическим свойствам каллидин — это гормон местного действия, регулирующий тонус кровеносных сосудов и проницаемость капилляров, а ангиотензин I физиологически нейтрален. [c.21]

    Вазопрессин ы. Антндиуретические и повышающие кровяное давление гормоны задней доли гипофиза. От окситоцина отличаются остатками третьей и восьмой аминокислот. У крупного рогатого скота найден аргинин-вазопрессин, у свиней—лизин-вазопрессин (Дю Виньо)  [c.393]

    Вазопрессин. Вазопрессин содержит одну аминокислоту основного характера, которая в вазопрессине быка (XII) представляет собой аргинин, а в гормоне свиньи — лизин. Трипсин в обоих случаях вызывает выделение глициламида [83]. Некоторый интерес представляет тот факт, что в вазо- [c.187]

    В некоторых белках происходит ацетилирование а-аминогрупп и е-аминогрупп остатков лизина. Субстраты ацетилирования различаются по размеру от меланоцит-стимулирующего гормона (76) до цитохрома с и гистонов, В гистоне IV из тимуса теленка ацетилируются а-аминогруппа концевого остатка серина и боковой радикал Lys-16. Были выделены специфические ацетилазы, использующие в качестве молекулы-донора ацетил-СоА. Следует [c.545]

    Вазопрессин отличается от окситоцина двумя аминокислотами он содержит в положении 3 от N-конца фенилаланин вместо изолейцина и в положении 8—аргинин вместо лейцина. Указанная последовательность 9 аминокислот характерна для вазопрессина человека, обезьяны, лошади, крупного рогатого скота, овцы и собаки. В молекуле вазопрессина из гипофиза свиньи вместо аргинина в положении 8 содержится лизин, отсюда название лизин-вазопрессин . У всех позвоночных, за исключением млекопитающих, идентифицирован, кроме того, вазотоцин. Этот гормон, состоящий из кольца с S—S мостиком окситоцина и боковой цепью вазопрессина, был синтезирован химически В. дю Виньо задолго до выделения природного гормона. Высказано предположение, что эволю-ционно все нейрогипофизарные гормоны произошли от одного общего предшественника, а именно аргинин-вазотоцина, из которого путем одиночных мутаций триплетов генов образовались модифицированные гормоны. [c.257]

    Ежегодно в мире производится более 200 тыс. тонн аминокислот, которые используются в основном как пищевые добавки и компоненты кормов для скота. Традиционным промышленным методом их получения является ферментация, однако все большее значение приобретают химические и особенно ферментативные методы синтеза различных аминокислот. Наибольший удельный вес в промышленном получении аминокислот имеет лизин и глутаминовая кислота, в больших количествах производят также глицин и метионин. Аминокислоты, особенно незаменимые, т. е. не синтезирующиеся в организме, представляют большой интерес в первую очередь для медицины и пищевой промышленности. Фенилаланин является предщественником ряда гормонов, осуществляющих многие регуляторные реакции в организме, метионин — основной донор метильных группировок при синтезе адреналина, креатина, а также источник серы при образовании тиамина, валин участвует в синтезе пантотеновой кислрты, треонин — предшественник витамина B 2 и т. д. Следовательно, дефицит аминокислот, способствующий нарушению многих обменных процессов, должен восполняться за счет введения соответствующих экзогенных аминокислот.- [c.26]

    II необходимость точного определения их полной структуры хорошо иллюстрируется на примере выделенного из задней доли гипофиза гормона вазопрессина, обладающего аптидиуретической активностью [46]. По структуре он идентичен окситоцину, за исключением того, что в нем вместо изолейцина присутствует фенилаланин. Вазопрессин быка, кроме того, имеет в своем составе вместо лейцина аргинин, а вазопрессин свиньи — вместо лейцина лизин [8, 127]. [c.409]

    Гель-фильтрацию на сефадексе сразу же после появления этого метода стали использовать для выделения пептидных гормонов из гипофиза. На фиг. 25 был приведен классический пример — выделение окситоцина и вазопрессина из задней доли гипофиза с помощью комплексообразования [29]. По-видимому, для разложения белковых ассоциатов совсем не обязательно применять 70%-ную муравьиную кислоту для этих целей, очевидно, вполне достаточна 0,1 М кислота [30, 31]. Лизин-вазопрессин образует димер, который может быть отделен от высших полимеров хроматографией на сефадексе 0-25 (2,2x200 см) в 1 М уксусной кислоте [32]. При обработке окситоцина 80%-ным ацетоном получают новый неактивный продукт (вероятно, изопропилиденовое производное), который можно очистить распределительной хроматографией на сефадексе 0-25 в одной из систем растворителей, указ [й-ных для окситоцина в табл. 29 [33]. Окситоциназа околоплодных вод отщепляет от гормона по меньшей [c.215]


    ВАЗОПРЕССИН — гормон, выделенный из задней доли гипофиза и гипоталамуса (части головного мозга) и представляющий собой циклич. пептид, содержащий по 8 остатков h-аминокислот. В. — гигроскопич. кристаллы, хорошо растворимые в воде изоалектрич. точка при pH 10,85—10,0. В. даст реакции, характерные для тирозина и лизина. Полностью устаповлено и подтверждено синтезом отроение В. [c.252]

    Недавно из лаборатории Дю-Виньо вышла работа, в которой описан синтез вазопрессина свиньи [580]. Заслуживает внимания тот факт, что концевым остатком в молекулах упомянутых выше гормонов является глицинамид. В связи с этим возникает важный вопрос не существуют ли подобные связи и в белках В молекуле вазопрессина свиньи остаток аргинина замещен лизином. Несмотря на это видовое различие, оба вазопрес- ина обладают почти одинаковой физиологической активностью. Окситоцин является одним из главных гормонов задней доли. нпофиза он вызывает сокращение мускулатуры матки и выделение молока. Вазопрессин повышает артериальное давление, что связано с его сосудосуживающим действием кроме того, он проявляет антидиуретическое действие. Подобие строения молекул вазопрессина и окситоцина позволяет объяснить наличие слабой окситоцической активности у препаратов вазопрессина и, возможно, также наличие слабой прессорной активности у препаратов окситоцина. [c.74]

    АМИНОКИСЛОТЫ. Производные карбоновых кислот, в которых один или два атома углеводородного радикала замещены аминогруппой NHj. Входят в состав белков, которые являются полимерами А. По числу карбоксильных групп (СООН) различаются moho- и дикарбоновые А., по числу аминных групп различаются MOHO- и диаминовые А. В зависимости от положения аминогрупп различают альфа-, бета- и гамма-кислоты. Получаются синтетически или выделяются из белков. А. занимают центральное место в обмене азотистых соединений в животных, растениях и микроорганизмах, так как служат источником образования белков, гормонов, ферментов и многих других соединений. В настоящее время известно более 90 природных А. В белках содержится лишь около 20 А. Растения и автотрофные микроорганизмы способны синтезировать все входящие в их состав А. Животные могут синтезировать лишь следующие А. аланин, аргинин, аспарагиновую кислоту, глутаминовую кислоту, гистидин, глицин, серин, тирозин, цистеин, цистин и так называемые иминокислоты — пролин и оксишролин. А., которые могут синтезироваться в организме животных, называются заменимыми. Для всех видов животных безусловно незаменимыми являются лизин, метионин, треонин, триптофан, фенилаланин, лейцин, валин, изолейцин. Ряд А. используется в кормлении с.-х. животных. [c.22]

    Ферментативный гидролиз применяют для получения крупных пептидов с целью изучения последовательности расположения аминокислотных остатков. Так как специфичность ряда энзимов достаточно ясно выражена, то энзиматический гид-ролизат редко содержит обычно встречающиеся в химическом гидролизате перекрывающиеся пептиды (о которых подробно будет сказано дальше). Среди наиболее часто применяемых протеиназ в первую очередь следует упомянуть трипсин, расщепляющий связи, образуемые карбоксильными группами аргинина и лизина, и химотрипсин, гидролизующий связи, в которых участвуют карбоксильные группы тирозина, фенилаланина, триптофана и метионина. Специфичность таких протеиназ, как пепсин и субтилизин, относительно широка — ими атакуются разнообразные пептидные связи. Избирательный энзиматический гидролиз иллюстрируется приводимой на рис. 7 схемой действия различных протеиназ на гормон — кортико-тропин. [c.40]

    В главе 25 уже было дано определение незаменимых аминокислот — кислот, которые человек получает из пищи. Сам организм не может синтезировать эти кислоты или синтезирует их слишком медленно в количестве, недостаточном для построения гормонов, ферментов и других специфических молекул. Эти кислоты не способны к восстановительному аминированию или переаминирова-нию. Лизин и треонин, очевидно, необратимо дезаминируются. В молекулах валина, лейцина и изолейцина содержатся разветвленные цепи, в молекуле фенилаланина — бензольное кольцо, в молекуле триптофана — ядро индола. Такие разветвленные цепи и кольца необходимы организму, но не могут быть синтезированы в нем. Не происходит в животном организме и конденсации индола с аланином. [c.346]

    Вскоре после установления строения каллидина синтез этого гормона был осуществлен практически одновременно в целом ряде лабораторий. В химическом отношении каллидин и брадикинин весьма близки, поэтому во всех опубликованных синтезах каллидина в качестве исходных веществ служили те или иные промежуточные продукты получения брадикинина. Так, например, Плесс и сотр. [1739] селективным удалением карбобензоксигруппы у защищенного брадикинина (А 2—10) (рис. 38) обработкой бромистым водородом в ледяной уксусной кислоте получили эфир нонапептида (В 2—10), который затем конденсировали с -нитрофениловым эфиром дикарбобензокси-ь-лизина. Последующий каталитический гидрогенолиз образовавшегося защищенного декапептида (С 1—10) привел к каллидину (О 1—10). [c.150]

    Сукцинилирование N-концевой аминогруппы и е-аминогрупп лизина аб-АКТГ приводит к понижению МСГ-активности (на коже лягушек) от 3,2 10 до 2,9 10 единиц/г АКТГ-активность сукциниладренокортикотропина (по весу тимуса крыс с удаленным гипофизом) составляет 14,1 0,7 единиц/мг (активность природного гормона 34,7 0,9 единиц/мг). При исследовании строения сукциниладренокортикотропина выяснилось, что модификация е-аминогрупп лизина. сообщает лизиновым пептидным связям стойкость к триптическому гидролизу. Поэтому при инкубации пентасукцинил-аб-АКТГ образовались только три пептидных фрагмента (в результате расщепления аргининовых пептидных связей) [1401]. [c.320]

    Одним из затруднений является нерастворимость некоторых производных белка. Это приводит к необходимости титрования в гетерогенной среде, что дает неясные результаты. О влиянии формальдегида на те участки кривых титрования белков, которые расположены в щелочной области, было уже упомянуто выше вопрос этот рассмотрен также в статье IV т. II. При дезаминировании белков <=.-аминогруппа лизина превращается в алифатическую гидроксильную группу, которая не реагирует с кислотами и основаниями. При дезаминировании желатины конечная кривая титрования обнаруживает почти полную потерю групп, титрующихся в интервале рН 8,5—12, и смещение изоэлектрической точки в кислую сторону однако та часть кривой, которая соответствует карбоксильным группам, повидимому, не изменяется [155, 156]. Эти результаты давно уже привели к выводам, имеющим важное значение для интерпретации кривых титрования белков [157]. Поведение карбоксильных групп также можно было бы изучить, блокируя их путем обработки кислым раствором метилового спирта, что обеспечивает полную и специфическую этерификацию. Указанный метод был применен к инсулину, однако неизмененный гормон, к сожалению, осаждается как раз в области рК карбоксильных групп. Тем не менее Моммертс и Нейрат [84] нашли, что подавление буферного действия до нуля, указывающее на полное отсутствие титруемых карбоксильных групп, достигалось только в том случае, когда содержание метоксильных групп соответствовало исходному количеству карбоксильных групп. Таким образом, кривые титрования измененных белков можно использовать для оценки природы и числа ионизирующихся групп в исходном белке или для расчета количества введенного группоспецифического реагента. [c.346]

    Биологическое действие. Аскорбиновая кислота участвует в создании окислительно-восстановительного потенциала ( д) в клетке и тем самым влияет на активность ряда ферментов. EQ системы аскорбиновая кислота дегидроаскорбиновая кислота равен 0,08 В, поэтому аскорбиновая кислота может участвовать в восстановлении цитохромов с и а, кислорода, нитратов. Витамин С защищает гемоглобин, препятствуя его окислению принимает участие в синтезе коллагена на этапе гидроксилирования пролина и лизина в оксипролин и оксилизин (это повышает прочность коллагеновых волокон) способствует биосинтезу хондроитинсульфатов соединительной ткани участвует в обмене тирозина (участвует в биосинтезе адреналина на этапе гидроксилирования дофамина и предохраняет адреналин от окисления участвует в обмене тирозина на этапе окисления й-оксифенилпировиноградной кислоты в гомогентизиновую кислоту и ее окислении) участвует в образовании желчных кислот на этапе 7а-гид-роксилирования предшественника участвует в синтезе фолиевой кислоты и через нее влияет на обмен нуклеиновых кислот и превращения рибозы в дезоксирибозу, косвенно активирует кроветворение и регенераторные процессы, увеличивает всасывание железа. В коре надпочечников содержится много аскорбиновой кислоты, которая используется в биосинтезе кортикостероидных гормонов. Этот процесс усиливается кортикотропином. Витамин С действует как главный водорастворимый антиоксидант и может ингибировать образование нитрозаминов (канцерогены) при приеме пищи. [c.344]

    Аскорбиновая кислота (витамин С) является участником многих окислительно-восстановительных реакций. В частности, аскорбиновая кислота принимает участие в реакциях гидроксилирования. В организме путем гидроксилирования происходит включение атомов кислорода в синтезируемые вещества. Таким синтезом является образование коллагена - самого распространенного белка организма. Выще отмечалось, что в процессе синтеза коллагена вначале образуется его предшественник - проколлаген, содержащий в больщом количестве аминокислоты лизин и пролин. Затем эти аминокислоты, находящиеся в составе проколлагена, подвергаются гидроксилированию и превращаются соответственно в оксилизин и оксипролин, что приводит к переходу проколлагена в коллаген. Это окисление протекает с участием аскорбиновой кислоты - витамина С. Учитывая широкое распространение коллагена в организме, его присутствие в связках, сухожилиях, участие в процессе мышечной релаксации, можно полагать, что введение в организм дополнительного количества витамина С должно вызывать повышение мышечной работоспособности. Гидроксилирование с участием аскорбиновой кислоты еще встречается при синтезе гормонов надпочечников - адреналина и кортикостероидов, выделяющихся при выполнении физических нагрузок и вызывающих благоприятные для мышечной деятельности изменения в организме на биохимическом и физиологическом уровнях. [c.211]

    Пептоны и нераспавшиеся белки из желудка поступают в кишечник. В тонком отделе его гидролиз белков и пептидов происходит при участии ферментов панкреатического и кишечного соков. В соке поджелудочной железы содержатся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы. Последовательное действие этих ферментов обеспечивает полный распад белков и пептидов с образованием смеси аминокислот. Трипсин, подобно пепсину, вырабатывается поджелудочной железой в неактивном состоянии — в форме трипсиногена, который при участии гормона слизистой энтерокиназы переходит в активный трипсин. Трипсин гидролизует пептидные связи, образованные карбоксилами лизина и аргинина. В отличие от пепсина этот фермент переваривает гистоны и протамины. Понятно, что белковая молекула под влиянием трипсина распадается на несколько пептидов, как и при действии пепсина, но в этом случае возникают пептиды иного состава. [c.119]

    Дипептид вилон (L-Lys—L-Glu) был сконструирован на основании статистического анализа аминокислотного состава препарата Тималин (Морозов и др., 20006 Хавинсон, 20016). Данные табл. III Приложения свидетельствует о том, что этот дипептид представляет собой структурный элемент многих тимических гормонов. Как показывает рис. 3, отличительной особенностью этого дипептида является отчетливое разделение электростатических зарядов между двумя его концами положительно заряженные аминогруппы принадлежат остатку лизина, а отрицательные заряды сосредоточены на остатке глутаминовой кислоты. Такая структура свидетельствует о способности вилона активно участвовать в электростатических (ион-ионных и ион-дипольных) взаимодействиях. [c.34]

    Возможности метода метки по сродству для изучения строения и функций клеточных рецепторов весьма велики. Большое разнообразие реакционноспособных (в том числе фотоактивных) соединений позволяет использовать их для получения модифицированных лигандов различного строения и размеров. С их помощью можно получать также реакционноспособные пептиды и белки. В последнем случае необходимо иметь производное с реакционноспособной группой, присоединенной к строго определенному аминокислотному остатку. В качестве примера такого производного можно привести инсулин быка, остаток лизина которого в В-цепи модифицирован Ы-[Ы -(2-нитро-4-азидфенил)-глицином]. Такое производное инсулина нашло применение для маркирования рецепторов гормона на жировых клетках (адипо-циты) (В. С. Reed et al., 1983, 1984). [c.13]

    Интересно, что одна из форм антидиуретического гормона (лизин-вазопресоин) имеет дополнительную функцию — способствует восстановлению памяти, облегчает процесс извлечения из памяти , акт воспоминания. [c.73]

    Одним из серьезнейших опровержений гипотезы об определяющем природу человека групповом отборе на альтруизм, наряду с явлениями рецидивирующей преступности и политического гангстерства, по-видимому, является распространение каннибализма среди диких народов. Но каннибализм характеризуется одной географической особенностью, раскрывающей его особое происхождение каннибализм вне чрезвычайного голода, по-видимому, был распространен-преимущественно в тропической зоне — там, где почти отсутствует скотоводство и недостаточно освоена рыбная ловля, т. е. там, где дикари вынуждены питаться растительной пищей. А растительные белки бедны лизином, незаменимой аминокислотой, которую человеческий организм не может синтезировать. Эта нехватка животных белков, по-видимому, способствовала конвергентному независимому друг от друга появлению в десятке районов тропических лесов карликовых племен, вероятно, обязанных своим происхождением наследственной ареактивности ткани к гормону роста гипофиза. Гены ареактивности характерным образом распространились отбором именно в зоне тропических лесов и ливней, где не было скотоводства, где не было и молочной пищи, хоть частично восполняющей нехватку лизина. Острейшая нехватка животных белков, по-видимому, породила каннибализм, почти отсутствовавший у диких народов там где эти белки можно добыть в достаточном количестве охотой. И почти у всех народов, не испытывавших лизиновой недостаточности, кан,-нибализм вызывает острейшее отвращение и презрение. [c.236]


Смотреть страницы где упоминается термин Лизин гормонах: [c.475]    [c.402]    [c.104]    [c.684]    [c.475]    [c.298]    [c.87]    [c.281]    [c.5]    [c.261]    [c.350]    [c.204]    [c.251]    [c.251]    [c.35]    [c.164]    [c.342]    [c.9]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Гормон гипофиза лизина

Гормоны

Лизин



© 2025 chem21.info Реклама на сайте