Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетальдегид механизм

    Вопрос о порядке реакции и доле цепного механизма в сравнении с молекулярным разложением ацетальдегида выяснен недостаточно. По-видимому, цепное разложение является важным направлением реакции и, ввиду того что в реакции образуется очень небольшой набор продуктов, мол ет быть представлено довольно простым механизмом Райса — Герцфельда  [c.331]


    Лимитирующей стадией является стадия 3 — перенос протона от ОН к сопряженному основанию А . Для обратного процесса гидратации ацетальдегида лимитирующей стадией является реакция 4. (Скорость гидратации и скорость дегидратации должны одинаковым образом зависеть от кислотности.) Подобный механизм был предложен и для реакции, катали- [c.489]

    Рассматривая теоретически обоснованные методы предвидения скоростей химических реакций, следует отметить, что применение в этих целях теории активного комплекса ограничивается в настоящее время простыми реакциями. Она дополняет теорию столкновений, которая дает возможность выяснить ход некоторых реакций между линейными молекулами в жидкой и газовой фазах. Однако во многих случаях скорость реакции, определенная с использованием теории столкновений, слишком велика. Объяснить же ход мономолекулярных реакций, например изомеризации н-бутана или разложения ацетальдегида, по теории столкновений невозможно. При интерпретации хода таких реакций с применением теории активного комплекса предполагается, что механизм активации основан на столкновении молекул и в дальнейшем реакция проходит в два этапа (образование активного комплекса и его распад или перегруппировка), характеризующихся разными скоростями. [c.222]

    Такой механизм удовлетворительно объясняет тот факт, что при низких температурах и низких или уморенных давлениях и в условиях ограниченной конверсии углеводорода молярное отношение ацетальдегида к метанолу равно единице. С другой стороны, для разложения па приведенной схеме требуется такое расположение атомов, которое представляется неправдоподобным. [c.334]

    Американские исследователи считают, что двухстадийный процесс протекает с промежуточным образованием кротонового альдегида. Они полагают, что процесс С. В. Лебедева имеет тот же механизм, причем ацетальдегид образуется в самой реакции в результате дегидрирования этилового спирта. Предложенный механизм имеет следующие стадии  [c.218]

    Механизм действия ацетатов при окислении ацетальдегида в уксусную кислоту заключается, вероятно, в чередующейся переме не валентности металлов, что обеспечивает перенос кислорода  [c.206]

    Механизм этого процесса был выяснен Виландом. Удалось показать, что уксусные грибки окисляют спирт до ацетальдегида, гидрат которого в результате энзиматического дегидрирования превращается сразу в уксусную кислоту. Согласно Нейбергу, при этом играет роль и альдегидмутаза, способная диспропорционировать ацетальдегид на равные количества уксусной кислоты и спирта. [c.249]


    Для вскрытия механизма окисления углеводородов наиболее ценной частью схемы Пиза несомненно является реакция 4 образования ацетальдегида и метоксила нри взаимодействии пропильного радикала и кислорода. Предположение о таком взаимодействии явилось большой удачей автора, и в большинстве последующих схем образование метилового спирта и альдегида описывается с помощью именно этой реакции. [c.107]

    Следует признать странным подобное утверждение со стороны авторов, почти одновременно экспериментально установивших, что разветвляющим агентом при окислении изобутана является ацетальдегид, а никак не перекись [121 (см. стр. 322). Такое противоречие вызвано, очевидно, тем, что авторы не находят иного пути образования ацетона при окислении изобутана, кроме как распадом трет, бутокси-радикала. На самом же деле вполне возможно предположить иной путь образования ацетона и притом нисколько не противоречащий современным представлениям о механизме окисления нормальных парафиновых углеводородов. [c.320]

    Таким образом, из ацетальдегида образуется гидроперекись ацила, которая в этих условиях крайне нестойка и практически немедленно распадается. Так как при температурах окисления пропилена радикал ацетальдегида (СНдСНО) скорее будет распадаться, чем реагировать с О2, то эта последняя реакция будет происходить редко, т. е. разветвление, действительно, будет иметь вырожденный характер. Интересно отметить, что в 1958 г. такой же механизм вырожденного разветвления был предложен [c.403]

    Механизм реакции образования пиколинов можно представить себе следуюш,им образом. По-видимому, образованию пиридинового цикла с участием аммиака предшествует конденсация трех молекул ацетальдегида, в которой аммиак участвует [c.539]

    Реакция получения уксусной кислоты окислением ацетальдегида молекулярным кислородом идет по радикально-цепному механизму. Напишите уравнения реакции получения надуксусной кислоты и образования из нее уксусной кислоты. [c.66]

    Расчет по методу молекулярных орбит показал наличие высокой электронной плотности на карбанионном углеродном атоме активного ацетальдегида, что подтверждает предложенный механизм [c.256]

    Этот механизм объясняет факт, обнаруженный в экспериментах с дейтериевыми метками, согласно которому все четыре атома водорода, входящие в состав ацетальдегида, происходят из этилена, а не из растворителя. [c.301]

    Напишите уравнения реакций формальдегида и ацетальдегида с метилмагнийиодидом. Назовите полученные соединения. Объясните механизм реакции. Для какого альдегида реакция присоединения нуклеофильного реагента идет легче и почему  [c.68]

    Хинолин можно получить из о-аминобензальдегида и ацетальдегида в присутствии едкого натра. Напишите уравнение реакции и обсудите возможный ее механизм. [c.279]

    Е чем различия в реакциях присоединения к этилену и ацетальдегиду При ответе на вопрос рассмотрите механизмы реакций [c.684]

    Показано, что расщепление диэтилового эфира в присутствии литийорганического соединения приводит к образованию этилена и этилата лития, а расщепление ТГФ дает енолят ацетальдегида и этилен. Интенсивное изучение механизма разрыва связей простых эфиров показало, что он меняется в зависимости от природы реагирующих соединений и даже для одного и того же эфира возможна реализация альтернативных механизмов. Так, например, для расщепления диэтилового эфира под действием литийорганического соединения постулированы механизмы, включающие и даже а ф -элиминирование  [c.255]

    Реакция расщепления алкеновой группы может происходить параллельно с реакцией щелочной эпоксидации вследствие близости условий этих двух процессов. Так, из а,Р-ненасыщенных кетонов, в молекуле которых есть енолизируемый атом водорода, вообще не получается эпоксипроизводного. Продуктами реакции являются два альдегида. Примером может служить соединение СбНбСН=СНСОСН(СОСвН5)2. Основные продукты, получающиеся в этом случае, — бензальдегид и ацетальдегид. Механизм взаимодействия, по-видимому, заключается в первичной атаке углеродного атома анионом гидроперекиси и в последующей изомеризации получившегося карбаниона 151 в более стабильный карбанион 152  [c.326]

    Отметим, что в течение этого процесса стационарное состояние характеризуется отсутствием окраски 12. В этом случае большая часть иода находится в виде Н1. По-видимому, их данные подтверждают именно такую схему. Во всяком случае, они показали, что невозможны другие механизмы, включающие прямые молекулярные реакции. Фотохимическое разложение ацетальдегида значительно сложнее, чем пиролиз нри высоких температурах. Хотя основными продуктами являются СО и СН4, в системе присутствуют также и На, (СНзСО)г, (СН0)2, НСНО и СаНв в количествах, составляющих 1 — 10% от количества СО. Относительное количество этих веществ обычно уменьшается с увеличением температуры [46]. Квантовые выхода понижаются при температурах ниже 100°, но быстро увеличиваются и достигают значений, равных значениям выхода для ниролиза нри температурах около 300°. Существуют данные, свидетельствующие о возможности не радикального, а самопроизводного распада фотовозбужденных молекул СН3СНО, причем этот самопроизвольный распад на СН4 и СО протекает в одну стадию. Вероятность такого распада увеличивается с уменьшением длины волны света. Наблюдаемые эффекты усложняются реакциями возбужденных молекул [c.334]


    Никлоз [99] и др. показали, что в образцах ацетальдегида, подвергнутых пиролизу до 25—50%, не было обнаружено следов кислорода. Это дает возможность удалять кислород из больших количеств ацетальдегида. Был предложен следующий механизм, приводящий к удалению кислорода  [c.334]

    Пиролиз диметилового эфира по сиоему механизму сходен как с пиролизом ацетальдегида, так и с пиролизом ацетона. Как и в случае пиролиза ацетальдегида, пиролиз диметилового эфира очень чувствителен к радикальной сенсибилизации и имеет большую длину цепи. При пиролизе ацетона и пиролизе деметилового эфира образуются довольно большие концентрации стабильного промежуточного продукта (в первом — кетон, во втором — формальдегид). [c.336]

    В случае ацетальдегида найдено, что дегидратация диола в растворе ацетона, изученная дилатометрическими методами, подчиняется законам общего кислотного катализа [37]. (Реакция прямой гидратации была изучена Беллом с сотруд. [44].) Кислотный катализ протекает, по-видимому, по следующему механизму  [c.489]

    Итак, сильное различие законов скорости для конденсации ацетона и ацетальдегида возникает не из-за различий в механизме реакций, а из-за различий относительных скоростей реакции енолят-иона с реагентами. В принципе при достаточно малых концентрациях ацетальдегида закон скорости для ацетальдегида долнчен приближаться к закону скорости для ацетона. [c.493]

    Имеется ряд сообщений о влиянии добавок на периоды и г . По-видимому, особо важную роль играют добавки соединений, образующихся в качестве промежуточных продуктов реакции, таких как формальдегид и ацетальдегид. Изучение смесей пентан-кислород и гексан-кислород при температурах несколько выше 200° С показало, что добавление умеренных количеств формальдегида оказывает сильнейшее ингибирующее действие [8], Точно так н<е при изучении смесей пропан-кислород было обнаружено увеличение индукционного периода в присутствии формальдегида [15]. В противоположность этому наблюдения над влиянием ацетальдегида на смесь ЮдН а + 20а при температуре 329° С и давлении 200 мм рт. ст, (по-видимому, в период т ) показали, что индукционный период после добавления ацетальдегида уменьшается. Однако следует отметить, что в указанных опытах индукционный период не уменьшался до нуля даже при добавлении 5% ацетальдегида, хотя по данным экспериментаторов [1] это соответствовало приблизительно концентрации ацетальдегида к концу индукционного периода в тех случаях, когда ацетальдегид вообще пе добавлялся к смеси. Поэтому Айвазов и Нейман пришли к заключению, что один ацетальдегид не может бы1Ь причиной мгновенного образования холодного пламени, и предположили, что перекиси, обнаруженные ими в сравнимых количествах, также должны играть известную роль в механизме возникновения холодного пламени. По-видимому, это предположение справедливо, однако возникает вопрос, идентичны ли перекиси, выделяемые из реакционной смеси, тем активным перекисям, которые обусловливают реакцию разветвления цепи в период т . Вероятно, следует различать, по крайней мере, два процесса образования перекисей. Одним из них является окисление формальдегида с образова- [c.256]

    Хотя природа поверхности оказывает несомненное влияние на продолжительность периода Tj и, вероятно, периода г. , она не имеет, согласно данным Дэя и Пиза [9], большого влияния на границы давление—температура областей холоднопламенного и высокотемпературного воспламенений. Эти исследователи, изучая систему пронан—кислород, получили картину, подобную изображенной на рис. 2 в пирексовых сосудах, обработанных азотной или фтористоводородной кислотами или покрытых КС1. В последнем случае наблюдалось значительное удлинение индукционного периода, особенно при низких температурах. Анализ продуктов, полученных в серии опытов с применением аналогичной обработки, показал наличие перекисей во всех сосудах, кроме покрытых КС1. На основании этих фактов Дэй и Пиз высказали сомнение относительно роли перекисей в механизме образования холодного пламени, и одновременно, подняли вопрос о влиянии ацетальдегида в связи с тем, что, согласно более раннему исследованию Пиза [34], покрытие стенок сосуда слоем K I обусловливает значительно более низкую концентрацию ацетальдегида, чем в сосудах без такого покрытия. По нашему мнению, так как реакция не обнаруживает тенденции к достижению стационарного состояния, обрыв цепей на поверхности сосуда мон ет лишь замедлить скорость реакции, но не способен полностью предотвратить достижение критических концентраций альдегидов и перекисей, вызывающих образование холодйого пламени. Эти критические концентрации зависят главным образом от давления и температуры и достигаются спустя более или менее длительное время в зависимости от природы поверхности. То обстоятельство, что в непрерывной системе не обнаружены перекиси в покрытой КС1 трубке, не свидетельствует против их кратковременного существования аналогичным образом при гетерогенном каталитическом окислении ацетальдегида на покрытой КС1 поверхности не требуется достин ения критической концентрации для течения самоускоряющейся реакции. [c.259]

    Согласно Хиншельвуду , термическое разложение ацетальдегида протекает по цепному механизму  [c.87]

    Эту реакцию нетрудно распространить на высшие олефины как правило, образуются кетоны, причем группа ОН в решающей стадии присоединяется к положительному концу двойной связи [113, 122]. Однако изменение реакционной среды может вызвать заметное повышение выхода альдегида из gHs в качестве главного продукта образуется ацетон, а пропионовый альдегид в количестве 20% получается при увеличении концентрации НС1 или при соответствующем выборе лигандов для Pd. Бутадиен сначала дает кротоновый альдегид, что указывает на 1,4-механизм, а затем ацетальдегид, который в присутствии сильной кислоты быстро конденсируется в триацетилбензол. В случае изобутена (и сходных олефинов) получаются только следы изомасляного альдегида, главным же продуктом является трет-бу-танол — результат простой гидратации, катализируемой кислотой. Вышеописанная схема показывает, что окончательная перегруппировка комплекса в этом случае невозможна  [c.170]

    Дивинил из ацетальдегида и этанола получается в присутствии окиси тантала, нанесенной на силикагель (2% ХэзОа), при 325—350 °С и атмосферном давлении. Согласно наиболее вероятному механизму образование дивинила протекает через промежуточную стадию получения кротонового альдегида  [c.364]

    Гидратацией ацетилена или его гомологов получают ацетальде-гид или соответствующие кетоны. В основе эти процессов лежит открытая М. Г. Кучеровым (1881 г.) [10] реакция гидратации ацетилена в ацетальдегид в присутствии Н2804 с добавкой солей ртути. Хотя эта реакция известна давно и проводится в заводском масштабе, но механизм ее недостаточно изучен и в настоящее время. Она иротекает в несколько стадий, возможно, по следующей схеме (правило Эльтекова) [11]  [c.516]

    Тиазолий-ион ведет себя как хранилище электронов , или электрофил, и происходит декарбоксилирование, В то же время енольное промежуточное соединение действует как нуклеофил и может протонироваться. Это промежуточное соединение удалось выделить. Наконец образуется ацетальдегид и одновременно регенерируется кофермент (в форме илида). Освобождение ацетальдегида — вот скоростьлимитирующая стадия механизма действия пируватде-карбоксилазы. [c.461]

    Хотя в такой записи окисление ацетальдегида представлено в виде молекулярного превращения, вряд ли можно предполагать, что именно на таком молекулярном механизме настаивал автор схемы. В 1935 г. в литературе уже утвердилось представление о цепной природе окисления альдегидов, и можно с уверенностью утверждать, что оно несомненно разделялось Пизом. Однако детали этого процесса, его элементарные стадии до конца еще не выяснены и в наши дни, и только этим можно объяснить введение Пизом в его схему суммарного молекулярного уравнения для окисления ацетальдегида. [c.108]

    При таком механизме вероятность разветвления должна расти с увеличением концентрации альдегидов. В частности, добавка альдегидов к исходной смеси должна расширять область воспламенения. Авторы указывают, что этот вывод полностью подтверждается экспериментом. Действительно, как было показано Тоунендом с сотр. [79] (см. рис. 35), прибавление 1 % ацетальдегида к смеси этана с воздухом приводит к резкому проявлению ранее отсутствовавшего полуострова самовоспламенения. Из данных, приведенных на том же рисунке, видно, что добавка ацетальдегида одновременно резко сокращает длительность периодов индукции низкотемпературного самовоспламенения (от десятков минут и даже часов до нескольких секунд), что также согласуется с предположением об участии альдегидов в низкотемпературном разветвлении. В интервале же высоких температур влияние добавки ацетальдегида на область самовоспламенения невелико. [c.121]

    Следует отметить, что если факты, сообщенные Эгертоном и Гаррисом, не вызвали никакой реакции со стороны М. Б. Неймана, то гипотеза Ньюитта и Торнса о механизме образования холодного пламени встретила с его стороны настойчивое возражение. Для доказательства несостоятельности такой альдегидной гипотезы М. Б. Нейман [37] изучил влияние примеси ацетальдегида на период индукции холодного пламени в смеси С4Н10Оа при начальном давлении в 333 мм рт. ст. и начальной температуре в 310° С. Было найдено, что период индукции холодного пламени плавно сокращается по мере увеличения добавляемого количества ацетальдегида. [c.177]

    При таком механизме (2), однако, спирт и СО2 должны образовываться по крайней мере в равных количествах. На самом лее деле ири окислении ацетальдегида [91] и иронионового альдегида [96] СОа найдено в 3— 5 раз меньших количествах, чем сиирта. Поэтому Норриш в приводимой ниже схеме окисления пропана предусматривает еще и другой путь обра-зоварпш спирта  [c.263]

    Ацетилироваиие. Реакцию с ацетальдегидом проводят при облучении по-видимому, она протекает по гомолитическому механизму. Энергия диссоциации связи С—Н в альдегидной группе более чем на 85 кДж/моль меньше, чем остальных связей С—Н, поэтому можно утверждать, что на первой стадии реакции свет инициирует гомолиз именно этой связи  [c.90]

    Е-эффект объясняет механизм передачи влияния атомных групп на большие расстояния по цепочке сопряженных связей. Так, в молекуле ацетальдегида водороды мегиль-ной группы под влиянием карбонила подвижны, лабильны. Это же свойство сохраняется и у сорбинового альдегида, поскольку здесь может произойти электромерный сдвиг [c.71]

    Реакция разложения ацетальдегида СНзСНО в газовой фазе с образованием метана и оксида углерода (II) имеет энергию активации 190 кДж/моль (при 800 К). В присутствии паров иода энергия активации снижается до 136 кДж/моль. Рассчитайте отношение констант скоростей катаяиз1ируемой и некатализируемой реакций. Предложите механизм реакций. [c.168]

    Бензохинон и ацетальдегид на солнечном свету легко реагируют, образуя 2,5-дигидроксиацетофенон. Объясните механизм этой реакции. Какое образуется соединение, если вместо ацетальдегида взять бетпальдегид  [c.329]

    Различные методы получения а-кетокислот перечислены в гл. И Кетоны , разд. Г.1, Г. 3, Г.5 и А.б, и в гл. 13, Карбоновые кислоты , разд. Б. 10. Декарбоксилирование можно легко провести нагреванием в хинолине, Ы,Ы-диметил-л-толуидине или анилине. С последним реагентом образуется шиффово основание, которое пужпо путем гидролиза превратить в альдегид (пример в.5). Возможно, при разложении, катализируемом ароматическими аминами, декарбоксилирование протекает по механизму циклического переноса электронов. Так как а-аминокислоты можно окислить в а-кетокислоты, они являются потенциальными источниками получения альдегидов например З.-индолацетальдегид получают с выходом 90% (в виде аддукта с брхульфитом) из триптофана [91 или ацетальдегид — с выходом 25—35% из аланина [10]. [c.89]


Смотреть страницы где упоминается термин Ацетальдегид механизм: [c.581]    [c.67]    [c.103]    [c.110]    [c.450]    [c.301]    [c.400]    [c.309]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8 (1966) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетальдегид



© 2025 chem21.info Реклама на сайте