Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анионы гетероциклические

    Амид-анионы гетероциклических азотистых производных. Гетероциклы, содержащие в цикле группу МН, дают в условиях, аналогичных Вышеописанным, сходные структуры с несколькими нуклеофильными центрами вследствие резонанса. Таковы случаи пиррола и индола. [c.192]

    Было проведено огромное количество реакций в условиях МФК, в которых галогены в активированных ароматических и гетероциклических соединениях замещались на фтор, эфирную, а также эфирную или аминную группу, тиоциан- или сульфо-группу (табл. 3.17). Макоша и сотрудники подробно изучили реакции анионов бензилцианидов. [c.265]


    Анионная полимеризация— ионная полимеризация, при которой концевой атом растущей цепи несет частичный илн полный отрицательный заряд. В анионную полимеризацию вступают 1) ненасыщенные соединения H2= XY, где X—электроотрицательная группа (N0. , N и т, д.), Y —Н, или группа типа X 2) карбонильные соединения 3) гетероциклические соединения, такие, как окиси олефинов, лактоны, лактамы и др. [c.229]

    Пример 315. Полимеризация гетероциклического мономера, протекающая по анионному механизму с получением живого полимера, характеризуется следующими данными [М]о = = 7,5 моль-л [1о] = 0,008 моль-л , [5]о = 0,01 моль-л , кр = 0,12 л - моль - с s = 0,25. Вычислите среднечисловые степени полимеризации через 6, 12 и 18 мин после начала полимеризации, если содержание активных центров постоянно, а эффективность инициирования равна 0,85. [c.109]

    Разработаны новые окислительные системы на основе пероксида водорода и комплексов переходных металлов (ванадия, молибдена, вольфрама), активные в окислении сернистых соединений. Синтезированы новые ванадиевые анионные пероксокомплексы с различными азотсодержащими гетероциклическими лигандами (пиридин, бипиридин, пиразин др.). Изучение состава и строения полученных пероксокомплексов проводили методами элементного анализа, ИК- и ЯМР-спектроскопии, а также рентгеноструктурного анализа [c.61]

    Электростатические эффекты могут передаваться с высокой эффективностью через систему ароматических колец. Это обстоятельство, несомненно, очень важно для функционирования биологически активных молекул, содержащих гетероциклические ароматические системы. Рассмотрим влияние степени протонирования азота пиридинового кольца на величину микроскопической константы связывания протона фенолят-анионом пиридоксина  [c.260]

    При этом анион оксазолона-5 действует как эквивалент ацил-аниона в соответствии с принципом нуклеофильного ацилирования при помощи гетероциклического реагента с обращенной полярностью [115]. [c.406]

    Большинство гетероциклических соединений при взаимодействии с алкиллитиевыми соединениями или амидами лития превращается в результате отщепления протона в соответствующие литиевые производные. Хотя и свободные анионы никогда при этом не образуются, легкость литиирования связана с кислотностью атома водорода при атоме углерода и, соответственно, со стабильностью сопряженного основания (карбаниона) [61]. Прямое литиирование в результате депротонирования напрямую связано с катализируемым основанием протонным обменом [62] при использовании таких реагентов, как метилат натрия. Именно такие процессы, проводимые при температурах, значительно более высоких, чем требуется для прямого литиирования, впервые продемонстрировали возможность селективного проведения процессов депротонирования и их использования в синтетических целях. Следует помнить, что кинетические факторы и положение кислотного равновесия не всегда способствуют одному и тому же направлению процесса термодинамически более стабильные продукты депротонирования обычно образуются при повышенной температуре и при проведении реакции в более полярных растворителях. [c.48]


    Анионная орбиталь во всех случаях, за исключением тех, в которых анионный центр расположен в боковой цепи гетероциклического соединения, ортогональна я-системе и по этой причине не взаимодействует с ней мезомерно. Тем не ме- [c.48]

    Бром- и иодпроизводные гетероциклических соединений легко реагируют с алкиллитиевыми соединениями даже при температуре —100 "С с образованием соответствующих литиевых производных. В тех случаях, когда возможно протекание процесса в нескольких направлениях, реализуется тот, который приводит к образованию наиболее стабильного аниона, точно так же, как и в случае прямого металлирования. Обмен атома фтора неизвестен, а атом хлора способен участвовать в таких процессах, хотя вследствие его малой активности примеры таких превращений немногочисленны. [c.50]

    Приведем количественные показатели способности к депротонированию некоторых метильных производных ароматических гетероциклических соединений 2-метилпиридин (рА 34), 3-метилпиридин (рЛ 37,7), 4-метилпиридин (рКа 32,2), 4-метилхинолин (рА 27.5) [128]. Полезно сравнить эти значения с значениями рЛ кетонов (19—20 для а-депротонирования) и толуола (- 40). Таким образом, для количественного превращения метилпиридинов в соответствующие анионы в результате латерального депротонирования необходимы сильные основания. Однако высокая стабилизация, возможная для таких анионов, позволяет применять слабые основания для генерирования этих анионов в небольшой равновесной концентрации и проводить реакции с их участием в таких условиях. Возможно, что депротонированию боковой цепи в этом случае [c.62]

    Восстановление ароматических (в том числе гетероциклических) хлоридов или бромидов водными формиатами в присутствии катализатора гидрирования и межфазного катализатора описано в патенте [553]. Примером является восстановление о-хлорнитробензола, который далее дегалогенируется до анилина. Эта реакция осуществляется на поверхности раздела фаз, о чем свидетельствует тот факт, что анионные поверхностно-активные реагенты также оказывают каталитическое действие. Другая группа исследователей [1616] использовала систему муравьиная кислота/триэтиламин при 100 °С для селективного восстановления с помощью Р(1/С одной из нитрогрупп до аминогруппы в полинитробензолах. Примерами являются 3-нитроанилин (77%), 2-амино-4-нитрофенол (57%), метил-З-амино-5-нитробензоат (65%)- Подобная же смесь реагентов была использована а) для восстановления фенила или двойной связи в сопряженных алкинах с образованием г ыс-алкенов и алканов (48—84%) и б) для гидрогенолиза третичных алкиламинов (61—93%) [1617]  [c.377]

    В случае гетероциклических азотсодержащих соединений, у которых атом водорода ЫН-группы, входящей в ароматическую систему, обладает большой протонной подвижностью, в результате реакции, как было установлено спектроскопическим методом, образуются мезомерные анионы без четкой фиксации магния по атому азота. Поэтому при последующей реакции пирро-лилмагнийгалогенида (7) образуется продукт замещения не по атому азота, а а-изомер, в то время как из производ юго индола (8) — -изомер  [c.264]

    Высокая ароматичность в химическом понимании, т. е. склонность к реакциям электрофильного замещения в ядрк гетероциклических аналогов циклопентадиенильного аниона (XVII) (фуран, тиофен, пиррол, селенофен, теллурофен), объясняется тем, что 2р.- [c.268]

    Высокая ароматичность в химическом понимании, т. е. склонность к реакциям электрофильного замещения в ядре гетероциклических аналогов циклопентадиенильного аниона (XX) фурана, тиофена, пиррола, селенофена, теллурофена — объясняется тем, что 2р2-электроны неподеленной пары гетероатома входят в л-систему, дополняя ее до устойчивого секстета. Также понятна высокая термическая устойчивость азонина (XVI) (Х=МН), в котором реализована 10-я-электронная оболочка. Его неполностью сопряженный карбоциклический аналог ц с-циклононатетраен, напротив, ведет себя как полиен и быстро полимеризуется уже при слабом нагревании. [c.223]

    Гетероциклические системы. Явление ароматичности не ограничивается карбоциклическими соединениями. Замещение какого-либо из углеродных атомов в перечисленных выше соединениях на другие атомы дает новые ароматические системы при условии, что я-электронная система не изменяется. Замещение СН-групп в бензоле на изоэлектронный (т. е. содержащий такое же число электронов) азот приводит к образованию серии гетероциклических ароматических соединений пиридин, пиридазин, пиримидин и пиразин. Возможно и дальнейшее замещение. Во всех этих соединениях циклическая бя-электрон-ная система ( ароматический секстет ) использует по одному электрону от каждого атома кислорода и азота, оставляя по свободной паре электронов на р -орбитали каждого азота на месте бензольной связи С—Н. В результате эти гетероциклические соединения обладают слабоосновными свойствами, основность свободной электронной пары на р -орбитали значительно меньше, чем свободной пары на 5рЗ-орбитали (ср. С—Н-кислотность в алканах и алкинах, разд. 8.2.1). Циклопен-тадиенид-анион можно также рассматривать как родоначальное карбоциклическое соединение серии гетероциклических ароматических соединений. Фуран и тиофен имеют ароматический секстет, в котором по одному электрону дают каждый из четырех углеродных атомов (т. е. две двойные связи), а два электрона являются свободной парой кислорода или серы. В пирроле [c.306]


    Все положения в бензольном ядре неравноценны, что позволило выявить влияние тяжёлого атома S в гетероциклической части бициклической молекулы на возможность и эффективность фотоиндуцированного внутримолекулярного переноса водорода, а также на спектрально-кинетические характеристики образующихся аци-нитрокислот или их анионов в зависимости от природы растворителя. [c.59]

    Нуклеофильное замещение в незамещенных аренах наблюдается очень редко, но оно возможно в результате атаки метилсульфинил-метидного аниона на конденсированные системы. Такие ионы можно получить, действуя на диметилсульфоксид трет-бушлатом калия [19, 20] или гидридом натрия [21, 22] при низкой температуре. Иногда в результате реакции образуется смесь продуктов, но в ряде случаев удается получить одий из продуктов в преобладающем количестве. По этой методике были также прометилированы некоторые многоядерные гетероциклические соединения часто с хорошими выходами. [c.43]

    Разнообразие структур является также, скорее, правилом, чем исключением, для соедипепнй, которые могут реагировать как 1,3-диполи. Изменение структуры ,3-ли1Юляриой молекулы и диполярофила делают эту реакцию очень разнообразной и полезной, особенно для синтеза гетероциклических соединений. Наиболее существенной структурной особенностью 1,3-днполяр 1ы. соединений является то, что онн имеют четыре я-электрона, распределенные между тремя атомами, и изоэлек-тронны аллильному аниону. Некоторые типичные 1,3-диполярные частицы приведены на схеме 10,1. [c.405]

    Исследованы [8611 реакции комплексов г(ис-(аминоацетонитрил)-б с-(этилендиамин)галогенкобальта (П1), у которых в нейтральном растворе или в присутствии оснований быстро замыкается гетероциклическое кольцо при атаке анионом NH электрофильного центра нитрильной группы. [c.86]

    Для 2,1-бензизоксазолов характерно легкое расщепление под действием различных реагентов. Незамещенный 2,1-бензизоксазол под действием оснований превращается в антраниловую кислоту через 3-анион (схема 106) [97], однако нуклеофильная атака положения 3 аммиаком приводит к образованию тримерного продукта [105]. 3-Метилзамещенное при действии оснований в более жестких условиях дает о-аминоацетофенон [97]. Кватернизация действием диметилсульфата приводит к смеси метилированных о-аминобенз-альдегидов [97]. Восстановление различными агентами дает о-ами-нозамещенные, а окисление может привести к продуктам азосочетания или к о-нитрозо- и о-нитрозамещенным [97]. При действии азотистой кислоты легко получаются о-диазониевые соли [97]. В обзорах [97, 104] рассмотрено большое число реакций 2,1-бензизоксазолов с образованием гетероциклических систем, включая [c.492]

    Из гетероциклических альдегидов, применяющихся в производстве синтетических смол, полярографически может быть определен фурфурол, механизм восстановления которого наиболее подробно был исследован в работе [137]. При этом показано, что в кислых растворах фурфурол образует две одноэлектронные волны 1/2 первой зависит от pH, Ец2 второй от pH не зависит. При рН 5,2 обе волны сливаются и общая волна сохраняет постоянную высоту до pH 9, после чего убывает в форме кривой диссоциации с р/С=10,3. На основании полученных результатов авторами сделан вывод, что первой волне соответствует одноэлектронное восстановление протони-рованных молекул фурфурола, образующихся в приэлектродном слое, до радикала карбинола с частичной быстрой димери-зацией последнего, а второй волне — необратимое восстановление этого радикала до фурилового спирта. Уменьшение волны при pH>9 объяснено тем, что в щелочной среде фурфурол непосредственно восстанавливается до карбинолят-аниона, геспособного к дальнейшему восстановлению. [c.135]

    В среде диметилсульфоксида и гексаметилфосфамида удалось осуществить катализируемую грег-бутоксид-анионом реакцию присоединения ароматических гетероциклических соединений к ненасыщенным углеводородам с сопряженными кратными связями (гомогенное алкилирование). Известна также катализируемая основанием реакция изомеризации алкинов, протекающая в этанольном растворе гидроксида калия. По своей депротонирующей способности эти системы занимают промежуточное положение между системами гидроксид-ион — вода и амид натрия — аммиак. В роли депротонирующего агента может выступать также анион диметилсульфоксида. [c.83]

    Примеры реакций викариозного нуклеофильного замещения даны в некоторых последующих главах книги. Ниже приведены три типичных примера таких превращений. Первый пример связан с реакцией викариозного нуклеофильного замещения в пятичленных гетероциклических соединениях [42]. Во втором примере стабилизирующая анион трифторметансульфонильная группа (У) одновременно служит и уходящей группой (X) [43]. Третий пример в некоторой степени необычен, поскольку нуклеофил присоединяется не по орто- или пара-положению относительно нитрогруппы. Присоединение карбаниона проходит по положению С(2> 6-нитрохиноксалина образующийся в результате такого присоединения анион стабилизирован делокализацией отрицательного заряда одновременно с участием атома азота N(1) и нитрогруппы [44]. [c.42]

    Пирролы, имидазолы, пиразолы и бензоконденсированные аналоги, обладающие NH-группой, способны депротонироваться (значение рА а лежит в интервале 14-18). Следовательно, эти соединения могут быть полностью превращены в соответствующие анионы при действии сильных оснований, таких, как гидрид натрия или -бутиллитий. Незамещенный пиррол ( рК . 17,5) проявляет кислотные свойства в гораздо большей степени, чем соответствующий насыщенный аналог пирролидин (рА 44). Кислотность индола (рА 16,2) значительно выше, чем кислотность анилина (рА 30,7). Такое различие в кислотности можно объяснить возможностью делокализации отрицательного заряда в анионе ароматического гетероцикла. Введение электроноакцепторных заместителей или дополнительного гетероатома, особенно иминного атома азота, существенно повышает кислотные свойства гетероциклических соединений. Прекрасный иллюстрацией такого влияния может служить тетразол, рА которого (4,8) имеет тот же порядок, что и рК карбоновых кислот [c.47]

    Карбанионы, образующиеся при депротонировании алкильных групп, непосредственно связанных с гетероциклическим фрагментом, в различной степени стабилизированы в результате взаимодействия с ароматическим циклом. Наиболее стабильные анионы образуются при депротонировании алкильных групп, расположенных в а- и у-положениях относительно фрагмента С=Ы, например, в положениях 2, 4 и 6 пиридинового цикла. Стабилизация таких анионов осуществляется тем же самым путем, что и стабилизация енолят-ионов (сопряженных енолятов). Далее в книге будет использоваться термин енаминатный ион для обозначения таких азотсодержащих анионов, аналогичных енолят-анионам. [c.62]


Смотреть страницы где упоминается термин Анионы гетероциклические: [c.342]    [c.145]    [c.376]    [c.908]    [c.45]    [c.376]    [c.72]    [c.131]    [c.333]    [c.381]    [c.328]    [c.363]    [c.322]    [c.645]    [c.183]    [c.125]    [c.71]    [c.41]    [c.54]    [c.60]    [c.63]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.173 ]




ПОИСК







© 2025 chem21.info Реклама на сайте