Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазматическая электрический потенциал

    Плазматическая мембрана имеет избирательную проницаемость для малых ионов и молекул простых веществ. Кроме того, она может поддерживать определенную концентрацию ионов внутри клетки, в частности Ма" и К" , что создает градиент концентрации этих ионов по сравнению с внеклеточной жидкостью, а также электрический потенциал на мембране. [c.33]


    Существуют три различных способа, с помощью которых может быть создан истинный мембранный потенциал (т. е. трансмембранная разность электрических потенциалов). Во-первых, он может возникать при работе электрогенных ионных помп, как это происходит в сопрягающих мембранах. Во-вторых, если по одну сторону мембраны добавить соль, катион и анион которой с разной скоростью проникают через мембрану, то благодаря именно этой разности скоростей возникает диффузионный потенциал. Диффузионный потенциал можно создать на сопрягающей мембране, например добавив К" в присутствии валиномицина (рис. 4.7). На сопрягающих мембранах органелл диффузионные потенциалы быстро рассеиваются благодаря движению противоионов-. В случае плазматической мембраны эукариотической клетки, где транспортные процессы в основном происходят медленно, такие потенциалы могут существовать часами. [c.61]

    Регуляция проницаемости мембран. Отдельные гормоны и нейромедиаторы изменяют проницаемость мембран клетки для целого ряда веществ-метаболитов. Примером может служить инсулин, который, связываясь с рецептором на плазматической мембране, резко увеличивает проницаемость глюкозы, аминокислот, отдельных ионов через мембраны и усиливает поступление их внутрь клетки. Молекулярные основы такого влияния до конца не изучены. Тем не менее усиленное поступление отдельных веществ в клетку влияет на биохимические процессы, а перераспределение ионов на мембране влияет на электрический потенциал клетки и ее сократительную функцию. [c.141]

    В этой связи следует отметить, что электрический потенциал, генерируемый молекулами родопсина, которые локализованы в плазматической мембране фоторецепторной клетки, оказывается того же направления, что и генерируемый Ыа+/К+-АТФазой (знак — в цитоплазме). Это означает, что электрогенная активность родопсина должна повышать Дгр на плазматической мембране. [c.117]

    Активный транспорт ионов Ма" " и К" имеет большое физиологическое значение, поскольку благодаря ему генерируется электрический потенциал на плазматической мембране, что регулирует электрическую возбудимость нервных и мышечных клеток, а также обеспечивается активный транспорт глюкозы и аминокислот в клетки организма, в том числе при их всасывании в кишечнике. Активный транспорт глюкозы в клетки осуществляется за счет градиента Ма . Натрий поступает в клетку и способствует проникновению глюкозы (см. рис. 30). [c.80]

    Сигналы, передаваемые нервными клетками, имеют разное значение и разный смысл, но их природа всегда одинакова — это изменение электрического потенциала плазматической мембраны нейронов (нервный импульс). [c.533]


    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]

    Концентрация К" внутри клетки, как правило, в 10-20 раз выше, чем снаружи. Для ионов Na" - картина прямо противоположная (см. табл. 6-3). Такая разница в концентрациях ионов обеспечивается работой (Na" + К" )-насоса, обнаруженного в плазматических мембранах практически всех животных клеток. Этот насос работает по принципу антипорта, активно перекачивая Na" из клеток, а К" внутрь клеток против их крутых электрохимических градиентов. Ниже будет показано, что градиент Na", создаваемый насосом, регулирует объем клеток за счет осмотических эффектов. Он также используется лля осуществления транспорта Сахаров и аминокислот в клетку. Почти треть всей энергии, необходимой лля жизнедеятельности животной клетки, тратится именно на работу этого насоса. В электрически активных нервных клетках при распространении потенциала действия происходит многократное накапливание небольших порций Na" и потери небольших количеств К" (см. ниже). При этом на восстановление уходит около 2/3 энергии, необходимой клетке. [c.384]

    Видимо, наиболее распространенными ионными каналами являются те, которые проницаемы главным образом для. Они обнаружены в плазматических мембранах почти всех животных клеток. Поскольку для их открывания скорее всего не требуется специфических мембранных возмущений, их называют иногда калиевыми проточными каналами. Эти каналы играют ключевую роль в установлении мембранного потенциала -разности электрического папряжения, наблюдающейся на двух сторонах всех типов мембран. [c.396]

    Трансмиттер-зависимые ионные каналы приспособлены для превращения внеклеточных химических сигналов в электрические сигналы. Они располагаются обычно в специализированных соединениях (называемых химическими синапсами), расположенных между нервными клетками и клетками-мишенями. Эти каналы концентрируются на плазматической мембране клетки-мишени в области синапса. Каналы способны открываться на некоторое время в ответ на связывание нейротрансмиттера, высвобождаемого нервным окончанием. При этом меняется проницаемость постсинаптической мембраны клетки-мишени (рис. 6-62). В отличие от потенциал-зависимых каналов, ответственных за возникновение потенциалов действия, трансмиттер-зависимые каналы относительно нечувствительны к мембранном) потенциалу и поэтому неспособны к самоусиливающемуся возбуждению. Вместо этого они изменяют проницаемость мембраны и, следовательно, влияют на мембранный потенциал. Величина этого изменения зависит от того, сколько трансмиттера высвободилось в синапсе и в течение какого времени он там присутствует. Ясно, что потенциал действия может возникнуть только при условии, что потенциал-зависимые каналы также присутствуют в этой же мембране клетки-мишени. [c.402]


    В плазматических мембранах электрически возбудимых клеток (главным образом нервных и мышечных) содержится множество нотенциал-зависимых воротных ионных каналов, ответственных за генерацию потенциалов действия - быстрых, скоротечных самораспространяющихся электрических возбуждений мембраны. Этот процесс начинается при деполяризации мембраны - смещении мембранного потенциала к менее отрицательному шачению. Стимул, который вызывает моментальную частичную деполяризацию, сразу же открывает потенциал-зависимые воротные Na -каналы, что позволяет небольшому количеству Ка" войти в клетку. Приток положительных зарядов в свою очередь деполяризует мембрану еще больше, приводя к открыванию других Ка"-каналов, пропускающих дополнительное количество ионов натрия [c.399]

    Только что описанный молекулярный механизм создания силы включается лишь тогда, когда мышца получает сигнал от своего мотонейрона. Нервный импульс вызывает на плазматической мембране мышечной клетки потенциал действия, и в результате электрическое возбуждение быстро распространяется по серии мембранных впячиваний, называемых поперечными трубочками (Т-трубочками), которые отходят внутрь от плазматической мембраны, вступая в контакт с каждой миофибриллой. Отсюда сигнал каким-то образом передается саркоплазматическому ретикулуму - своеобразной оболочке из сообщающихся уплощенных пузырьков, которая окружает каждую миофибриллу подобно сетчатому чулку (рис. 11-17). [c.264]

    Специальные преобразователи превращают сенсорные стимулы в электрические сигналы. Например, у позвоночных волосковые клетки внутреннего уха представляют собой механорецепторы на свободной поверхности каждой волосковой клетки имеется пучок стереоцилий (гигантских микроворсинок), и при наклоне таких пучков открываются ионные каналы, что ведет к изменению мембранного потенциала Мембранный потенциал фоторецепторных клеток в глазу позвоночного изменяется при поглощении света молекулами родопсина, содержащимися в этих клетках. И в том, и в другом случае электрический сигнал, возникающий в сенсорной клетке вначале в форме рецепторного потенциала, передается соседним нейронам через химические синапсы. Однако два упомянутых класса клеток-рецепторов используют для выработки рецепторных потенциалов различные стратегии в основе одной лежат рецепторные молекулы, связанные с каналами, а другая зависит от молекул-рецепторов, не связанных с каналами. В волосковых клетках физическая связь между стереоцилиями порождает механические силы, которые прямо воздействуют на ионные каналы в плазматической мембране, заставляя их быстро открываться или закрываться. В палочках сетчатки активированные светом молекулы родопсина инициируют каскад ферментативных реакций, в результате которых в цитозоле гидролизуется цикличе- [c.345]

    Метод фиксации напряжения. Важные данные о природе биоэлектрических потенциалов можно получить в результате использования метода фиксации напряжения на плазматической мембране. Этот метод дает возможность подавлять развитие потенциалов действия и контролировать величину мембранного потенциала покоя. Для этого к двум электродам (внутри- или внеклеточным) присоединяют усилитель с обратной связью. Этот усилитель автоматически подает электрический ток, необходимый для смещения мембранного потенциала покоя на любой нужный в эксперименте уровень. В результате такого мгновенного изменения поляризации мембраны возникают ионные токи через мембрану. Так, если плазматическую мембрану деполяризовать до нуля, то возникающий при этом ток имеет три составляющие направленный наружу ток, обусловленный разрядкой мембранной емкости направленный внутрь ионный ток и направленный наружу ионный ток. [c.88]

    Движение ионов через мембрану определяется тремя факторами 1) градиентом концентраций иона по обе стороны мембраны 2) электрическим зарядом иона 3) разностью потенциалов по обе стороны мембраны. Внутренняя сторона плазматической мембраны заряжена отрицательно. Вне клетки концентрация На+ в несколько раз выше, чем внутри. При пассивной диффузии ионы (Ка+ перемещаются по градиенту своей концентрации и в сторону отрицательного заряда, поэтому для Ма+ существует наибольший электрохимический градиент. При образовании потенциала действия проводимость для Ма+ возрастает в сотни раз.. При этом катион движется со скоростью 10 с что лишь в 10 раз медленнее, чем его движение в межклеточной среде. Расчеты показывают, что при участии в этом процессе белкового переносчика скорость переноса была бы на несколько порядков меньше, поэтому предполагается, что в мембране функционирует специальный На+-ка-нал , который может открываться или закрываться . [c.33]

    Второй способ действия рецепторов состоит в том, что они открывают или закрывают регулируемые ионные каналы плазматической мембраны. Здесь возможны два механизма создания сигнала 1) изменение в состоянии каналов порождает небольшой и непродолжительный ток ионов, что приводит к кратковременному изменению мембранного потенциала 2) открытие каналов приводит к значительному притоку ионов в цито юль, что, в свою очередь, вызывает внутриклеточную реакцию. Первый механизм работает главным образом в электрически активных клетках, например в нейронах и мышечных волокнах. Так, большинство нейромедиаторов регулирует мембранный потенциал постсинаптической клетки, открывая или закрывая ионные каналы ее плазматической мембраны падение мембранного потенциала ниже определенного порогового уровня вызывает взрывную деполяризацию мембраны (потенциал действия), которая быстро распространяется по всей мембране постсинаптической клетки. Изменения мембранного потенциала не сопровождаются за.метными изменениями концентраций ионов в цитозоле, так что исходный сигнал, полученный постсинаптической мембраной, не превращается в истинный внутриклеточный сигнал до тех пор, пока распространяющийся потенциал действия не дойдет до нервного окончания. Плазматическая мембрана нервного окончания содержит потенциалзависимые каналы для Са " . Вызванная потенциалом действия временная деполяризация мембраны открывает эти каналы, и ионы кальция устремляются внутрь окончания вниз по своему очень электрохимическому градиенту, выполняя роль вторичного посредника, запускающего секрецию нейромедиаторов. [c.56]

    Как уже говорилось в гл. 6, разность потенциалов между внутренней и наружной сторонами плазматической мембраны - мембранный потенциал - зависит от распределения электрического заряда (разд. 6.4.15). Заряд переносят через мембрану нервной клетки малые неорганические ионы, главным образом Ка К СГ и Са , которые проходят через липидный бислой по специфическим ионоселективным каналам, образуемым специальными трансмембранными белками (разд. 6.4.14). При открытии и закрытии ионных каналов распределение заряда изменяется и происходит сдвиг мембранного потенциала. Таким образом, передача сигналов нервными клетками зависит от каналов с регулируемой проницаемостью. [c.295]

    ЭТИХ сигналов, природа их во всех случаях одинакова и состоит в изменении электрического потенциала на плазматической мембране нейрона. Передача сигналов основана на том, что электрическое возмущение, возникшее в одном участке клетки, распространяется на другие участки. Если нет дополнительного усиления, эти возмущения затухают по мере удаления от их источникоа На коротких расстояниях затухание незначительно, и многие нейроны проводят сигналы пассивно, без усиления. Однако для дальней связи такого пассивного распространения сигнала недостаточно. Поэтому у нейронов с длинными отростками в ходе эволюции выработался активный сигнальный механизм, представляющий собой одно из самых удивительных и характерных свойств нейрона. Электрический стимул, сила которого превышает определенную пороговую величину, вызывает взрыв электрической активности, распространяющийся с большой скоростью вдоль плазматической мембраны нейрона. Эту бе17щую волну возбуждения называют потенциалом действия или нервным импульсом. Потенциал действия передает информацию с одного конца нейрона на другой без затухания со скоростью до 1(Ю м/с, а в некоторых нейронах еще быстрее. [c.73]

    Глюкоза используется мозгом в ходе гликолиза и в цикле лимонной кислоты распад глюкозы обеспечивает почти весь запас АТР мозга. За счет энергии АТР нервные клетки (нейроны) поддерживают электрический потенциал на плазматической мембране и, в частности, на мембране, окружающей их длинные отростки-аксоны и дендршпы, образующие линии передач в нервной системе. Передача нервных импульсов вдоль нейронов происходит посредством волнообразного изменения электрических свойств мембраны, т. е. так называемого потенциала действия. Ка , К " -АТРаза плазматической мембраны (разд. 14.16) нуждается в постоянном притоке энергии АТР для накачивания ионов К внутрь аксонов и выведения ионов Ка из аксонов (рис. 24-14). За счет энергии гидролиза одной молекулы АТР три иона N3 [c.759]

    П. Неодинаковое распределение ионов по двум сторонам от плазматической мембраны приводит к возникновению на ней электрического потенциала, называемого Он целиком зависит от существования каналов, благодаря которым [c.58]

    В середине ХК в. известный физиолог животных Клод Бернар, рассматривая явления раздражимости как одно из главных свойств всего живого, высказал мысль о существовании общих механизмов восприятия и быстрой реакции организмов на внешние воздействия. В своей книге Жизненные явления общие животным и растениям он писал Способность, составляющая существенное условие всех явлений жизни у растений, как и животного, существует в самой простейшей степени... Эта способность есть раздражимость . Основанием для такого вывода послужили опыты по влиянию анестетиков на быстрое складывание листьев мимозы при механическом раздражении. Он установил, что у растений наблюдается такое же подавление анестетиками проведения импульса возбуждения, как и у животных. Однако молекулярные механизмы раздражимости, включающие восприятие внешнего стимула, передачу информации о нем и ответные реакции начали изучаться лишь в XX в. Это было обусловлено практическими потребностями медицины, связанными с поиском обезболивающих и успокаивающих лекарственных средств, что, в свою очередь, стимулировало научные исследования по изучению вос1фиятия, передаче и выяснению закономерностей вызываемых реакций под воздействием внешнего стимула. Последнее привело к открытию механизма химической передачи возбуждения от клетки к клетке с помощью низкомолекулярных посредников - медиаторов аце-тилхолина, дофамина, норадреналина, адреналина, серотонина и др. соединений. В нервной клетке эти соединения содержатся в специальных секреторных пузырьках и освобождаются при возбуждении в очень узкое пространство (1 нм) между контактирующими клетками -синаптическую щель. Свободный медиатор связывается с белками-рецепторами соседней клетки, в результате происходит открывание ионных каналов в плазматической мембране, и ионы поступают в клетку по электрохимическому градиенту, вызывая изменения электрического потенциала клетки. Таким образом, химическая информация преобразуется в электрическую. Взаимодействие медиатора с рецептором может реализоваться и по другому механизму -через включение систем внутриклеточных вторичных посредников, которые регулируют активность ферментов в югетке. [c.3]

    Разность потенциалов между внутренней и наружной сторонами плазматической мембраны-так называемый мембранный потенциал-зависит от распределения электрического заряда (рис. 18-6). Заряд переносят через мембрану нервной клетки небольшие неорганические иошл, главным образом N8, К , С1 и Са , причем проходят 0Ю1 через липидный бислой только по специальным каналам (см. тл. 6). При открывании или закрывании ионных каналов распределение зарядов изменяется и происходит сдвиг мембранного потенциала. Таким образом, передача сигнала нервными клетками зависит от каналов с регулируемой проницаемостью-так называемых каналов с воротами . Наиболее важны два типа каналов  [c.76]

    С использованием специально разработанной методики экстраклеточной регистрации потенциалов удалось обнаружить и исследовать фотоэлектрические реакции, связанные с рецепцией и преобразованием светового стимула при фототаксисе (О. Синещеков, Ф. Литвин). Последовательность таких реакций на плазматической мембране включает первичный, градуально зависящий от интенсивности света электрический ответ — фоторецепторный потенциал фототаксиса, пороговую регенеративную реакцию и последующие медленные изменения разности потенциалов. Па основании анализа результатов фотоэлектрических измерений и регистрации двигательной активности жгутиков водоросли предполагается, что градуальный фоторецепторный потенциал непосредственно контролирует движение жгутиков при фотоориентации, тогда как регенеративная электрическая реакция вовлекается в пороговый фотофобный ответ клетки при резком изменении освещенности. Что касается медленных изменений трансмембранного потенциала, то они, по-видимому, отражают адаптацию фоторецепторной системы к измененному уровню освещенности. [c.432]

    Все каналообразующие белки и многие белки-переносчики позволяют растворенным веществам проходить через мембраны только пассивно ( с горки ). Этот процесс называется пассивным транспортом (или облегченной диффузией). Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентраций этого вещества по обеим сторонам мембраны (градиентом концентрации). Однако если молекула заряжена, то на ее транспорт влияют как градиеш концентрации, так и разница электрических потенциалов на сторонах мембраны (мембранный потенциал). Вместе концентрационный и электрический градиенты составляют электрохимический градиент. Фактически в любой плазматической мембране есть градиент электрического поля. При этом внутренняя сторона мембраны обычно заряжена отрицательно по отнощению к наружной (см. разд. 6.4.15). Такой потенциал облегчает проникновение в клетку положительно заряженных ионов, но препятствует прохождению внутрь ионов, заряженных отрипательно. [c.382]

    Мембранный потеппнал зависит от распределепия ионов на обеих сторонах мембраны. Выше уже шла речь о том, что (Na" +К")-АТРаза способствует установлению осмотического равновесия в клетке за счет поддержания низкой внутриклеточной концентрации Na". Из-за низкой концентрации натрия внутри клетки необходим избыток других катионов, чтобы сбалансировать заряд фиксированных клеточных анионов -отрицательно заряженных органических молекул, находящихся внутри клетки. Эту роль выполняют главным образом ионы калия благодаря К"-проточным каналам, которые обеспечивают свободный переход этих ионов через мембрану и позволяют им засасываться внутрь клетки за счет отрицательного заряда фиксированных анионов (даже при отсутствии какой бы то ни было работы (Na" + К" )-АТРазы. Таким образом, устанавливается равновесие, при котором электрическая сила, втягивающая ионы калия внутрь клетки, уравновешивается стремлением К вытекать из клетки по градиенту концентрации. Мембранный потенциал является выражением этой электрической энергии и его величина может быть рассчитана из крутизны градиента концентрации К", необходимой для уравновешивания электрических сил. Поясним на таком примере. Предположим, что электрический градиент через плазматическую мембрану первоначально отсутствует (т. е. мембранный потенциал равен нулю), но концентрация К" внутри клетки выше (для уравновешивания [c.396]

    Разность потенциалов на сторонах плазматической мембраны клетки, находящейся в покое, варьирует в зависимости от организма или типа клеток от — 20 мВ до — 200 мВ. Хотя градиент всегда вносит наибольший вклад в этот потенциал, значительным эффектом обладают также и градиенты других ионов (плюс неравновесные эффекты ионных насосов). Чем более проницаема мембрана для данного иона, тем в большей степени мембранный потенциал зависит от равновесных условий для этого иона Следовательно, практически при любом измепепии пропицаемости мембраны для ионов происходит измепепие и мембранного потенциала. Это ключевой принцип, связывающий электрическую возбудимость клеток с активностью ионных каналов. [c.399]

Рис. 6-61. Запись тока, протекающего через единичный потенциал-зависимый Na -канал, находящийся в крошечном участке плазматической мембраны мышечной клетки эмбриона крысы (см. рис. 6-60). Мембрану деполяризуют импульсом (А). Три графика тока (Б) получены в трех экспериментах с одним и тем же участком мембраны. Каждое существенное изменение тока соответствует открытию и закрытию одного канала. Сравнение показывает, что время открытию и закрытию может существенно варьировать, при этом скорость протекания зарядов через канал остается практически постоянной. Маленькие флуктуации при записи тока являются электрическим шумом записывающей аппаратуры. Суммарный ток, записанный в 144 повторяющихся экспериментах, показан на В. Он эквивалентен току Na через относительно большой участок мембраны, содержащий 144 канала. Сравнение Б и В показывает, что суммарный ток отражает вероятность открывания индивидуального канала. Эта вероятность со временем уменьшается, так как каналы деполяризованной мембраны переходят в инактивированную конформацию. Кинетика открывания и инактивации каналов мышечной клетки эмбриона намного медленнее, чем у типичной нервной клетки. (По данным J. Patlak и R. Рис. 6-61. <a href="/info/1073550">Запись тока</a>, протекающего через <a href="/info/1187568">единичный потенциал</a>-зависимый Na -канал, находящийся в крошечном участке <a href="/info/101559">плазматической мембраны мышечной</a> <a href="/info/509796">клетки эмбриона</a> крысы (см. рис. 6-60). Мембрану деполяризуют импульсом (А). Три графика тока (Б) получены в трех экспериментах с одним и тем же участком мембраны. Каждое существенное <a href="/info/1712151">изменение тока</a> соответствует открытию и закрытию одного канала. Сравнение показывает, что время открытию и закрытию может существенно варьировать, при <a href="/info/133380">этом скорость</a> протекания <a href="/info/1548511">зарядов через</a> канал остается практически постоянной. <a href="/info/1803735">Маленькие флуктуации</a> при записи тока являются <a href="/info/135363">электрическим шумом</a> записывающей аппаратуры. Суммарный ток, записанный в 144 повторяющихся экспериментах, показан на В. Он эквивалентен току Na через <a href="/info/1634227">относительно большой</a> <a href="/info/567181">участок мембраны</a>, содержащий 144 канала. Сравнение Б и В показывает, что суммарный ток отражает вероятность открывания индивидуального канала. Эта вероятность со временем уменьшается, так как каналы деполяризованной <a href="/info/104095">мембраны переходят</a> в инактивированную конформацию. Кинетика открывания и инактивации каналов <a href="/info/1279682">мышечной клетки</a> эмбриона намного медленнее, чем у типичной <a href="/info/103255">нервной клетки</a>. (По данным J. Patlak и R.
    Мембранные компоненты химически не инертны. Они сами подвержены метаболическим превращениям под действием окислительных ферментов, низкомолекулярных катализаторов, протеаз, фосфолипаз, гликозилтрансфераз и др. Явления эндо- и экзоцитоза, изменение вязкости и сопротивления электрическому току плазматической мембраны во время генерации потенциала действия, движения (а может быть, и перераспределения) заряженных групп в период воротного тока, обмен и движение компонентов, изменение сорбционных свойств мембраны, набухание примембранных слоев, изменение плотности упаковки липидов и толщины мембраны в зависимости от физиологического состояния клетки свидетельствуют о том, что биологические мембраны являются весьма подвижными образованиями. Они обладают высокой текучестью своих компонентов, а также (что не исключено) целых мембранных локусов, движением молекул в монослоях, обменной диффузией молекул между монослоями и движением монослоев относительно друг друга. [c.72]

    Физико-химическая природа ФЭТ заключается в следующем. Если к клетке приложить два электрода (на определенном расстоянии), через которые протекает постоянный ток, то внутри клетки будет происходить перераспределение иоиов. Катионы будут двигаться к катоду, анионы — к аноду. Но ни те, ни другие свободно попасть к электродам не могут, так как плазматическая мембрана к ним полупроницаема. В результате этого под анодом будет увеличиваться концентрация анионов, что и приведет к локальному увеличению мембранного потенциала покоя (МПП) — гиперполяризации мембраны. Такая гиперполяризация называется анэлектротоном (АЭТ). Аналогичные изменения в концентрации катионов наблюдаются под катодом электрического тока. Однако локальное увеличение концентрации катионов с внутренней стороны плазматической мембраны в области приложения катода приведет к уменьшению МПП, т, е. к деполяризации — кагэлекгрогон (КЭТ). [c.86]

    Нейромедиаторы выделяются квантами по нескольку тысяч молекул. Нервный импульс не изменяет величины квантов медиатора, но повышает частоту их выделения. Когда возбуждающий потенциал приходит в нфвное окончание, за одну миллисекунду в синапс изливается содержимое 200—400 везикул. Следовательно, при возбуждении частота миниатюрных потенциалов возрастает в 200—400 тыс. раз. В тысячи раз большее число молекул нейромедиатора достигает постсинаптической мембраны. Все (или почти все) рецепторы переходят в активированное состояние. Открывается большое число каналов входа Ма+ и Са +, в результате чего на постсинаптической мембране возникает (а затем распространяется по всей плазматической мембране клетки) потенциал действия. Так химическим путем осуществляется передача электрического заряда с нервной клетки на иннервируемую. Решающее значение в том, как и в других секреторных про- [c.104]

    Функции потенциал-зависимых Ка -каналов специфически блокируются двумя паралитическими чдами тетродотоксином (ТТХ), получаемым из иглобрюхих рыб и сакситоксином, который выделяют из определенных видов морских динофлагелляг. Из-за высокой аффинности и специфичности эти токсины оказались незаменимыми для фармакологических исследований, подсчета числа Ка -каналов в мембране и для очистки этих каналов. Было показано, что в плазматической мембране клеток скелетных мышц находится лишь несколько сотен Ка -каналов на 1 мкм , т е. один канал на 10 ООО молекул фосфолипидов. Несмотря на такую малую плотность каналов, эта мембраны электрически возбудимы, поскольку каждый канал обладает высокой проводимостью, пропуская более 8000 ионов за 1 миллисекунду. [c.401]


Смотреть страницы где упоминается термин Плазматическая электрический потенциал: [c.60]    [c.290]    [c.76]    [c.151]    [c.290]    [c.103]    [c.117]    [c.399]    [c.402]   
Основы биохимии Т 1,2,3 (1985) -- [ c.349 , c.759 ]




ПОИСК





Смотрите так же термины и статьи:

Электрический потенциал



© 2025 chem21.info Реклама на сайте