Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез соединений метанола

    Самую многочисленную группу составляют химические процессы, из которых наиболее важными в технологии являются следующие процессы горение (сжигание жидкого, твердого и газообразного топлива с целью получения энергии, серы — для получения серной кислоты) пирогенные (коксование углей, пиролиз и крекинг нефтепродуктов) окислительно-восстановительные процессы (газификация твердых и жидких топлив, конверсия углеводородов) электрохимические (электролиз воды, растворов и расплавов солей, электрометаллургия, химические источники тока) электротермические (электровозгонка фосфора, получение карбида и цианамида кальция) плазмохимические (реакции в низкотемпературной плазме, включая окисление азота и пиролиз метана, получение ультрадисперсных порошкообразных продуктов) термическая диссоциация (получение извести, кальцинированной соды, глинозема и пигментов) обжиг и спекание (высокотемпературный синтез силикатов, получение цементного клинкера и керамических кислородсодержащих и бескислородных материалов со специальными функциями) гидрирование (синтез аммиака, метанола, гидрокрекинг и гидрогенизация жиров) комплексообразова-ние (разделение и рафинирование платиновых и драгоценных металлов, химическое обогащение руд, например путем хлорирующего или сульфатизирующего обжига для перевода металлов в летучие или способные к выщелачиванию водой соединения) химическое разложение сложных органических веществ (варка древесных отходов с растворами щелочей или бисульфита кальция с целью делигнизацми древесины в производстве целлюлозы) гидролиз (разложение целлюлозы из отходов сельскохозяйственного производства или деревообрабатывающей промышленности с по- [c.211]


    Метанол может служить сырьем для синтеза соединений различных классов  [c.371]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]

    Продукты окисления. Неполное окисление углеводородов и углеводородных смесей всегда было исключительно интересным объектом исследования. Сложность этой проблемы объясняется двумя причинами во-первых, сама реакция окисления является трудноуправляемой и, во-вторых, — реакционная смесь содержит бесчисленное множество соединений самых различных классов. Из всех процессов неполного окисления углеводородов наиболее хорошо изученным и освоенным является получение синтез-газа (смеси СО п водорода) для производства метанола и для оксосинтеза [300]. Сырьем для этого процесса служит метан (природный газ) в смеси с 95 %-ным кислородом. Очистка продукта реакции от СО позволяет также получать водород (в смеси с азотом) для синтеза аммиака (301—305]. [c.584]

    Метанол применяется в химической иромышленности для метилирования органических соединений, синтеза формальдегида, как составная часть незамерзающей жидкости для радиаторов (антифриз), в качестве растворителя на заводах анилино-красочной, кабельной и фармацевтической промышленности, как моторное топливо и т. п. При синтезе органических соединений метанол в ряде случаев не может быть заменен другими соединениями, менее опасными в отношении возможности отравления. Использование метанола в качестве растворителя должно быть ограничено заменой другими растворителями. [c.204]


    Независимо от намечаемого использования водорода, будет ли это прямое восстановление железных руд, синтез аммиака, метанола, гидрирование нефтяных фракций или производство топлив высокой теплотворности, для решения вопроса об экономике процесса необходимо предварительно выбрать оптимальный способ получения водорода. В будущем значительные усилия должны быть затрачены на разработку еще более дешевых источников получения этого ценного сырья. Для этого потребуется детальный анализ возможных методов разделения газовых смесей как абсорбция, адсорбция, диффузия, ректификация, связывание в виде комплексных соединений или при помощи химических реакций. [c.168]

    Практическое использование гетерогенного катализа для синтеза промежуточных продуктов ароматического ряда идет пока несколько позади применения контактных реакций для получения неорганических продуктов (аммиак, азотная кислота, серный ангидрид) и некоторых синтезов алифатических соединений (метанол, хлоропроизводные метана, этилена, уксусная кислота из ацетилена). Тем не менее имеется ряд производств, где гетерогенный катализ уже применяется или с успехом может быть применен. [c.487]

    При каталитическом взаимодействии оксида углерода (II) с водородом образование кислородсодержащих соединений является побочной нежелательной реакцией. Однако возможность варьирования составом продукта синтеза путем изменения технологических параметров процесса, в частности применения других катализаторов, послужило основой разработки способа получения из синтез-газа метанола. В основе производства метанола лежат реакции, протекающие по уравнениям  [c.244]

    В результате освоения этих новых методов и процессов появилась возможность организовать промышленный синтез метанола из окиси углерода и водорода под давлением, осуществить производство искусственного жидкого топлива. В связи с возрастающим использованием двигателей внутреннего сгорания стали развиваться и процессы переработки нефти в моторные топлива (крекинг) и связанные с ними производства, в которых продукты переработки нефти используются как химическое сырье. На этой основе возник и начал бурно развиваться промышленный органический синтез соединений алифатического ряда. [c.120]

    К первом,у случаю относятся все протекающие с уменьшением объема реакции газообразных веществ с газами (например, синтез аммиака, метанола и др.), с жидкими веществами (жидкофазное гидрирование, окисление ряда соединений кислородом воздуха и пр.) и с твердыми веществами (синтез карбонилов различных металлов). [c.9]

    При всех способах каталитического риформинга наряду с жидкими продуктами получаются газы, содержащие водород, метан, этан, пропан, бутан. Углеводороды газов риформинга используются как сырье для органического и неорганического синтезов — аммиака, метанола и других соединений. Выход газов каталитического риформинга — 5—15% от веса сырья, [c.476]

    В химической промышленности водород используется для синтеза аммиака, метанола, высших спиртов и хлористого водорода, а также в процессах восстановления органических соединений и др. [c.22]

    Циклические схемы производства широко применяются для синтеза аммиака, метанола и других соединений. Установки, работающие по циклической схеме, более компактны, они включают меньше аппаратов, обеспечивают большую полноту переработки исходных веществ в продукты по сравнению со схемами с открытой цепью. Циркуляцию применяют и в тех случаях, когда хотят возвратить в процесс какое-нибудь вспомогательное вещество, выделяющееся в конце процесса и используемое на начальных стадиях процесса, например аммиак в содовом производстве (см. с. 121), [c.69]

    Циклические схемы производства широко применяются для синтеза аммиака, метанола и других органических соединений. Установки, работающие по циклической схеме, более компактны, они включают меньше аппаратов, обеспечивают при чистом газе большую полноту переработки исходных веществ в продукты. Капитальные затраты на их строительство меньше. [c.43]

    Промышленное освоение каталитических процессов гидрирования и дегидрирования (присоединения и отщепления водорода) стало возможным благодаря работам Сабатье, Ипатьева, Зелинского. Бурное развитие нефтехимической промышленности вызвало повышенный интерес к использованию этих процессов для получения мономеров и полупродуктов из нефтяного сырья. Гидрирование парафинов (деструктивное) и олефинов, ацетиленовых, алициклических и ароматических углеводородов, синтез аммиака, метанола и синтетического бензина, дегидрирование бутана, бутилена, циклических соединений — далеко не полный перечень процессов, осуществляемых в промышленности. [c.158]


    В колонне синтеза образуется метанол-сырец, который содер-лшт 89—92% вес. метанола и 4—6% вес. воды. Остальные примеси (изобутиловый спирт, диметиловый эфир и некоторые высокомолекулярные соединения) ввиду их незначительного количества при 84 [c.88]

    Извлечение из газовых смесей сернистых компонентов — важный технологический процесс, весьма распространенный в современной технике. Применение этого процесса определяется чисто технологической необходимостью и жесткими ограничениями, связанными с санитарной охраной чистоты воздушного бассейна. В промышленности в ряде случаев очистка газов от сернистых соединений вызывается требованиями обеспечить нормальное ведение основного производства. Например, присутствие серы в газах, используемых для синтеза аммиака, метанола и других органических веществ, ведет к отравлению катализаторов и остановке процесса. Поэтому газ должен быть тш,ательно очищен от всех соединений серы. [c.5]

    В производстве метанола при удалении ледяной пробки из отвода, ведущего от коллектора водорода к аппарату синтеза метанола, загорелся газ. Продувку вели через разболченное фланцевое соединение. Коллектор водорода и его отводы к агрегатам не были изолированы. [c.190]

    Газификация твердых топлив. Получение синтез-газа можно осуществлять газификацией кускового (брикетированного), мел-.козернистого и пылевидного топлива. Известны следующие процессы газификации пылевидных топлив, осуществляемые но различным технологическим схемам газификация под давлением, одноступенчатая и многоступенчатая газификация в исевдоожи-женном слое, газификация с применением инертного твердого теплоносителя, газификация с применением золы в качестве теплоносителя, газификация с применением кислорода, газификация в пульсирующей среде и др. Однако несмотря на многочисленность разработанных вариантов и схем процессов доля использования твердых топлив в производстве синтез-газа для выработки метанола и аммиака не превышает в капиталистических странах 3% [6]. Такое положение объясняется, с одной стороны, громоздкостью технологического оформления, сложностью оборудования, высокими капитальными и текущими затратами и, с другой стороны, низким качеством получающегося синтез-газа, загрязненного серосодержащими соединениями. [c.11]

    Приведенные примеры относятся к гомогенным реакциям, которые осуществляют в реакторах вытеснения, представляющих собой трубу, заполненную лишь реагирующей средой. Реакторы вытеснения также широко используют для проведения гетерогенных каталитических реакций. В этом случае их заполняют частицами твердого катализатора, вследствие чего такие аппараты часто называют реакторами с неподвижным слоем твердых частиц. Эти реакторы используют для синтеза аммиака, метанола и для осуществления большого числа других важных гетерогенных реакций. Сам реактор обычно состоит из многих десятков или даже сотен трубок, соединенных параллельно и закрепленных между двумя трубными решетками, как это имеет место в кожухотрубном теплообменнике. Диаметр трубок, как правило, равен нескольким сантиметрам, а их длина достигает нескольких метров. На рис. 1 показана несколько устаревшая конструкция реактора для синтеза аммиакаСмесь азота и водорода поступает в реактор сверху, затем проходит вниз, внутрь стального кованого корпуса. Это сделано для предотвращения перегрева металла. Затем газ поднимается по пучку трубок, в которых его температура повышается за счет теплообмена с катализатором. В рассматриваемом реакторе катализатор укладывают на решетку в межтрубном пространстве. Газ, выходящий из трубок, сверху направляется вниз через слой катализатора, нагревается за счет тепла реакции и выходит из аппарата. [c.13]

    Затем в США был освоен процесс на основе соединений родия и иода, когда давление синтеза составляет всего 0,1—0,5 МПа, а выход уксусной кислоты достигает 99% по метанолу. Этот метод получения уксусной кислоты позволяет базировать ее производство на метане или на малодефицитных углеводородах (углеводород—)-синтез-газ— -метанол— уксусная кислота) и на угле (уголь— -водяной газ—>-метанол— -кислота). По некоторым оценкам, он является самым экономичным нз способов получения уксусной кислоты. [c.543]

    ГИДРОГЕНИЗАЦИЯ (гидрирование, лат. hydrogenium — водород) — реакция присоединения водорода к соединениям и элементам, происходящая в большинстве случаев в присутствии катализаторов, под давлением и при высоких температурах. Реакция отщепления водорода от соединений называепся дегидрогенизацией, или дегидрированием. Г. широко используют в промышленности для проведения важных химико-технологических процессов синтезов аммиака, метанола и других спиртов. При Г. растительных масел получают твердые жиры, саломас, маргарин из угля, нефтепродуктов и горючих сланцев — моторные топлива и другие ценные продукты. [c.72]

    Методами функционального анализа соединения 1 было не только установлено, какие группы присутствуют и какие из первоначально присутствовавших в системе исчезли, но и была определена соответствующая каждой группе эквивалентная масса . Анализ позволил установить, что на каждый ацетиленовый водород приходится одна ацеталеподобная группа, и что в соединении имеется либо одна тройная связь, либо две двойных связи. Считая, что молекулярная масса соединения равна его эквивалентной массе , для соединения 1 получили приведенную выше формулу. О данной реакционной системе было известно, что пропаргиловый спирт, целевой продукт реакции, со временем должен окисляться в соответствующий альдегид, и что в формалине, взятом для синтеза, содержался метанол. Кроме того, реакционная смесь обладала слегка кислой реакцией. Все эти признаки подтверждают образование соединения, идентифицированного путем анализа функциональных групп. [c.621]

    Газ давлением 0,7 МПа сжимается компрессором 1 до 30 МПа, затем в фильтре 2 отделяется от масла и ючищается от инертных компонентов и непредельных соединений метанолом-ректификатом в абсорбере 3. После отделения капель метаиола в сепараторе 4 газ направляется иа стадию синтеза. Рециркуляция метанола-ректификата осуществляется с помощью триплекс-иасоса 5 н рекуперационной машины 7. Регенерированный метанол подается [c.31]

    Двадцатые годы нашего столетия ознаменовались дальнейшим шагом вперед в развитии химической техники — внедрением в нее методов, основанных на применении катализаторов, высоких давлений и температур, глубокого холода, непрерывных процессов. С помощью этих приемов был начат синтез метанола из окиси углерода и водорода под давлением, было осуществлено производство искусст]венного жидкого топлива. В связи с интенсивным ростом использования двигателей внутреннего сгорания развиваются и процессы переработки нефти в моторные топлива (крекинг) и связанные с ними производ- ства, использующие продукты переработки нефти как химическое сырье. Ца этой основе возникает и начинает бурно развиваться промышленный органический синтез соединений жирного ряда. [c.120]

    Успехи органич. К. неразрывно связаны с развитием теории строения органич, соединений Бутлерова. В 1869—74 А. М. Бутлеров заложил основы гидратационного К., превратив олефины в спирты путем присоединения воды в присутствии серной к-ты, а также открыл каталитич. полимеризацию непредельных углеводородов в присутствии HoSOi, Н3РО4, BF3 и других катализаторов. Обе эти реакции нашли широкое промышленное применение. В 1871 М. М. Зайцев впервые применил каталитич. гидрирование водородом (в присутствии палладия) при восстановлении нитросоединений в амины. В 1881 М. Г. Кучеров открыл реакцию гидратации ацетиленовых углеводородов при каталитич. действии солей окиси ртути, широко применяемую в пром-сти для нолучения ацетальдегида из ацетилена. В. Н. Ипатьев впервые показал большую эффективность сочетания катализа с высокими давлениями, положив тем самым начало большому и важному для техники разделу К. под давлением (синтеза аммиака, метанола, гидрирование органич. соединений). [c.231]

    В молекуле сульфоксида метионина появляется второй центр асимметрии — атом серы. Окисление некоторых производных метионина протекает стереоспецифично так, из метилового эфира L-метионина образуется 80% d-сульфоксида и только 20% /-сульфоксида. Очевидно, что причина стерической направленности процесса состоит в том, что в молекуле метионина уже есть один асимметрический центр. Этот факт, конечно, не имеет большого значения в синтезе пептидов. Необходимые для пептидного синтеза соединения, например карбобеизоксиметионин-сульфоксид, метиловый эфир метионинсульфоксида или гидразид карбобензоксиметиониисульфоксида, можно получить или из соответствующих производных метионина окислением перекисью водорода в метаноле, или непосредственно из сульфоксида метионина обычными методами, т. е. этерификацией или N-ацили-рованием [1097]. [c.312]

    По беоко нверсионной схеме (рис. 28) синтез-газ при давлении пиролиза метана до ацетилена поступает в отделение компрессии и дожимается компрессором 1 до давления синтеза метанола. Да лее газ поступает в абсорбер 2 для отмывки двуокиси углерода ацетилена, этилена и других соединений метанолом-ректификатом Одновременно в метаноле-ректификате растворяется некоторое ко личество водорода, окиси углерода и метана. Очищенный газ сме шивается с циркуляционным газом и поступает в колонну 3. Син тез проводят в обычных колоннах при содержании инертных компо нентов в газе до 30 объемн. %. Г аз при выходе из колонны охлаж [c.88]

    Многообразие аппаратов, различный характер процессов, протекающих в них, большое число газообразных, жидких и твердых сред определяют особенность физического износа технологическ41х установок. Основными факторами, определяющими коррозионное разрушение, являются химические свойства и физическое состояние среды, поэтому целесообразно рассмотреть некоторые из наиболее часто встречающихся в технологических потоках веществ, обладающих сильными агрессивными свойствами. К таким веще- ствам относятся сернистые соединения, хлор и хлористый водород, окислы азота, различные кислоты и др. Необходимо отметить, что многие технологические процессы, например синтез аммиака, метанола и карбамида (мочевины), гидрогенизационные процессы и переработка нефти, проводят при высоких давлениях и температурах. В этих ус 10виях коррозионн)чо активность могут приобрести вещества, в обычном состоянии не действующие на металлы и их сплавы. [c.85]

    Наиболее пригодным катализатором синтеза метанола является окись цинка или ее соединения с медью, окисью хрома, а тйкже с обоими этими компонентами (многокомпонентный катализатор, содержащий в качестве активатора окись хрома). Окись цинка может служить катализатором синтеза метенола, а окись хрома не обладает какой-либо активностью. [c.73]

    Примером возможности получения разных продуктов из одних и тех же исходных веществ могут служить синтезы органических соединений из окиси углерода и водорода. Изменяя условия проведения процесса (температуру от 160 до 500°С, давление от 1 до 300 ат, отнощение количеств окиси углерода и водорода) и выбирая соответствующий катализатор (Fe, Со, Ni, ZnO, Ru с такими добавками, как СггОз, КаО, AI2O3, MgO и т. д.), можно получать метанол, изобутанол, парафиновые углеводороды, олефины, ароматические соединения, органические кислоты и т. п. [c.272]

    Реакции восстановления окиси углерода водородом лежат в основе синтеза целого ряда продуктов, как то метанола, высших спиртов, сложных кислородсодержащих соединений, углеводородов и т. д. Направление синтеза (с точки зрения получаемых продуктов) зависит от соотношения СО водород , технологического режима и природы катализатора. В Германии синтез углеводородов (так называемый синтез по Фишеру и Тропшу) в годы II мировой войны подвергся детальному изучению и широкому внедрению в промышленность. [c.591]


Смотреть страницы где упоминается термин Синтез соединений метанола: [c.405]    [c.28]    [c.337]    [c.231]    [c.333]   
Радиохимия (1972) -- [ c.14 , c.481 ]




ПОИСК







© 2024 chem21.info Реклама на сайте