Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимия и лазеры

    В первых трех главах изложены основы квантовой механики и спектроскопии, необходимые для понимания свойств электронновозбужденных состояний. В гл. 4 детально обсуждается природа электронно-возбужденных состояний, ее связь со спектрами поглощения и испускания, безызлучательные процессы, химические свойства возбужденных состояний, скорость их взаимопревращений. В гл. 5 подробно рассмотрен перенос энергии в жидких и твердых растворах. В гл. 6—9 представлено большое число важнейших фотохимических реакций, которые обсуждаются с точки зрения принципов, сформулированных в гл. 1—5. В гл. 10 рассмотрены актинометрия, методика эксперимента в фотохимии, лазеры, а также другие вопросы. [c.8]


    Появление лазеров существенно расширило границы фотохимии. [c.190]

    Фотохимию можно назвать одновременно и старой и молодой областью науки. Начав свое развитие еще в первой половине XIX в., классическая фотохимия в 50—70-х годах нашего столетия пережила подлинный ренессанс, связанный с последовательным внедрением в технику фотохимии трех важнейших изобретений. Во-первых, это метод импульсного фотолиза, позволяющий исследовать первичные стадии фотохимических превращений, такие, как образование радикалов и возбужденных электронных состояний. Во-вторых, это метод хроматографии, с помощью которого можно разделять и анализировать продукты фотохимической реакции. И наконец, открытие лазеров совершило подлинную революцию в фотохимии. [c.5]

    В настоящее время лазеры широко используются в науке и промышленности. Они начинают решительно проникать и в повседневную жизнь, находя применение в сканерах чековых аппаратов супермаркетов, в воспроизведении с видео- и компакт-дисков. В связи с такими замечательными свойствами лазерного излучения, как монохроматичность, высокая интенсивность, короткая длительность импульса, применение их в фотохимических исследованиях в последнее время значительно возросло. Лазерные методы, используемые в экспериментальной фотохимии, обсуждаются в гл. 7. Само действие лазера основано на фотохимических процессах, обсуждаемых в этой и предыдущих главах. Поэтому стоит закончить данную главу кратким обзором некоторых важных классов лазеров на фотохимическом языке. [c.141]

    В идеальном фотохимическом эксперименте должен исполь зоваться монохроматический свет, так как природа многих первичных процессов и их квантовые выходы могут зависеть от длины волны света. Кроме того, применение монохроматического излучения упрощает измерения абсолютных интенсивностей света. Но большинство источников света, исключая лазеры, дают излучение в некотором спектральном диапазоне, и для выделения света с узкой полосой длин волн требуются специальные приборы. Для этой цели хорошо подходят решеточные и призменные монохроматоры, хотя для некоторых экспериментов интенсивности получаемого света могут оказаться недостаточными. В более простых случаях применяют один или несколько цветных фильтров. Ими могут быть жидкие растворы или стекла, которые содержат соединения, обладающие сильным поглощением света с нежелательными длинами волн. Большое значение для фотохимии имеют интерференционные светофильтры, основанные на явлениях интерференции в тонких пленках (родственных цветовым эффектам в мыльных пузырях), которые могут быть изготовлены с любыми нужными характеристиками пропускания. [c.179]


    Одним из основных факторов, повлиявшим на углубление нашего понимания фотохимии, было развитие в течение нескольких последних десятилетий методов обнаружения и идентификации промежуточных продуктов фотохимических реакций. К ним относятся атомы, радикалы и ионы как первичные продукты фотолиза, возбужденные состояния этих первичных продуктов, возбужденные состояния, возникающие в первоначально поглощающем свет материале, включая триплетные, которые участвуют затем в флуоресценции, фосфоресценции и безызлучательных переходах (внутренняя конверсия и интеркомбинационная конверсия). Именно возможность изучения этих активных интермедиатов на коротких временных шкалах привела к появлению утонченных экспериментов с временным разрешением, которые рассматриваются в следующем разделе. Эксперименты с временным разрешением позволяют зондировать фотохимическую систему в заданный момент времени вскоре после поглощения кванта света, когда интересующие промежуточные продукты еще сохраняются. В этом разделе дается краткий обзор наиболее важных методик, пригодных для изучения промежуточных продуктов, с целью ввести читателей в круг обсуждаемых исследований с временным разрешением. Здесь не место для обсуждения теоретических основ спектроскопии будет лишь сделана попытка указать методики, которые могут быть с пользой применены. Одна из тем, которая многократно возникает, — это вопрос о том, как лазеры упростили более старые способы спектроскопических измерений и сделали возможными совершенно новые способы исследований. [c.194]

    За последние годы в фотохимии развивается новое направление — лазерная химия. Лазерные источники света обладают рядом преимуществ по сравнению с разрядными лампами. Может быть получена большая плотность излучения время вспышки в импульсных лазерах можно значительно сократить по сравнению с лампами с в специальных опытах до с). Кроме [c.305]

    Ангармонизм колебаний и перераспределение энергии между разл. степенями свободы при соударениях молекул приводят к ограничению направленности действия источника возбуждения системы. Для достижения наиб, выхода продукта при минимуме затрат энергии нужно, как правило, возбуждать не одну, а неск. определенных колебат. степеней свободы, причем не обязательно оптически разрешенных. Это позволяет управлять хим. р-циями их скоростью, составом продукта и др. Подобные задачи решаются, в частности, в плазмохимии, фотохимии, радиационной химии, лазерной химии. Первичные продукты внеш. воздействия-сильно неравновесные по хим. составу и степени возбуждения частицы - могут, взаимодействуя, приводить к образованию больших концентраций др. возбужденных частиц, в т. ч. с инверсной заселенностью, что является необходимым условием для генерирования лазерного излучения (см. Лазеры химические). [c.219]

    Для кинетического анализа энергетически неравновесных процессов (газовые лазеры, плазмохимия, фотохимия и т. д.) требуется знание микроскопических констант скорости. Константы скорости и сечения микроскопических реакций (разд. 6.2.3) дают менее усредненную информацию, чем константы скорости термических реакций, и поэтому способствуют развитию представлений о физике элементарного акта. [c.151]

    Изобретение лазеров в 1960 г. создало предпосылки для обращения к фотохимии как основе промышленных процессов. Высокая интенсивность, монохроматичность излучения и приемлемая эффективность лазеров явились основой для успешных лабораторных демонстраций химических реакций, инициированных лазерным излучением. В разд. 6.4 показано, что большое число таких химических превращений может быть использовано для разделения изотопов. При этом оказываются действенными как традиционная фотохимическая техника, так и некоторые новые методы, ставшие возможными лишь благодаря использованию лазеров. Раздел 6.3 посвящен применению лазеров для получения атомных ионов. [c.256]

    Со времени создания в 1960 г. первого лазера квантовая электроника прошла в своем развитии огромный путь. Открыты различные виды лазеров, генерирующих излучение на тысячах длин волн в спектральном диапазоне примерно от 0,1 до 2000 мкм, разработаны эффективные методы управления параметрами излучения. Стали реальностью казавшиеся ранее невероятными чрезвычайно высокие мощность, степень монохроматичности, спектральная яркость и другие параметры оптического излучения. Успехи лазерной техники и быстрое развитие сфер ее применения привели не только к существенному усовершенствованию традиционных оптических методов исследования, но и к появлению принципиально новых идей и методов, новых научных направлений. Диапазон научных и практических применений лазеров постоянно расширяется. Представление об этом может дать простое перечисление примеров — лазерные спектроскопия и фотохимия, управляемый термоядерный синтез, локация и связь, контроль за состоянием природной среды, микрохирургия отдельной живой клетки, автоматический раскрой тканей и металлических листов... Без преувеличения можно утверждать, что нет ни одного естественно-научного направления или связанной с ним области техники, где бы применение лазеров уже не привело к получению новых интересных результатов или не сулило их получение в будущем. [c.159]


    Физическая химия — область науки, где применение лазеров оказалось весьма плодотворным, а перспективы остаются по-прежнему широкими и заманчивыми. Очевидно, что выиграли больше других и развиваются быстрее те направления, в основе которых лежат проблемы взаимодействия электромагнитного излучения с веществом, и прежде всего — оптическая спектроскопия и фотохимия. Воздействие достаточно мощного лазерного излучения на вещество сопровождается различными эффектами, величина которых нелинейно зависит от интенсивности излучения. Эти эффекты стали предметом весьма успешных исследований в совершенно новой научной области — нелинейной лазерной спектроскопии. Появились лазерные спектроскопические методы исследования очень слабого поглощения, чрезвычайно быстропротекающих процессов и многие другие. Большие перспективы открылись и в [c.159]

    Быстрое развитие в последние годы исследований в области лазеров ИК- и ДИК-диапазонов спектра, несомненно, приведет к существенному увеличению масштабов использовапия этих лазеров, которые уже сейчас с успехом применяются в исследованиях лазерного разделения изотопов, плазмы, в различных вариантах метода спектроскопии двойных резонансов. Следует заметить, что сама генерация вынужденного ИК- и ДИК-излучения может быть эффективным методом изучения свойств колебательных н вращательных состояний, кинетики релаксационных пропессов в молекулах органических соединений, знание которых необходимо как для развития этой области квантовой электроники, так и для исследований, связанных с ИК-лазерной фотохимией и селективным воздействием лазерного излучения на вещество. [c.198]

    Короткая гл. 10 содержит описание методики проведения фотохимических реакций, актинометрии. (Метод импульсной спектроскопии, к сожалению, мало распространенный в советских лабораториях, кратко описан в гл. 4.) Кроме того, в гл. 10 затронуты вопросы применения лазеров в фотохимии. [c.6]

    До создания первых лазеров было невозможно получить монохроматический свет с интенсивностью 10 —10 фотон/сек и выше. В настояш,ее время фотохимики пока еще не применяют лазеров в качестве источников света ввиду того, что большинство мощных лазеров не излучает в области длин волн короче 7000 А. Можно ожидать, что, когда появятся лазеры с интенсивным излучением в видимой и ультрафиолетовой областях, они получат широкое распространение в фотохимии, особенно при исследованиях механизма реакций. [c.292]

    Применения лазеров в фотохимии [c.300]

    Проблема применения лазеров в фотохимии находится сейчас примерно в том же положении, которое возникает, когда уже имеется решение пока еще не сформулированной задачи. Сейчас уже известны лазерные материалы с довольно широким спектром излучения, правда, слишком малоинтенсивного в области длин волн короче 6000 А. Наиболее замечательные свойства лазеров — когерентность и монохроматичность — пока еще не используются фотохимиками, которых, по-видимому, в гораздо большей степени увлекает возможность получения с помощью лазеров высоких интенсивностей света. Можно полагать, что в будущем будут созданы интенсивные лазеры, работающие в области спектра, интересующей фотохимиков, и тем самым в их арсенале появится новое мощное оружие. [c.300]

    При помощи интенсивного лазерного пучка можно, например, осуществить прямое заселение триплетных состояний. Далее, если одно из веществ имеет узкое окно в спектре поглощения, а другое поглощает при этой частоте, то с помощью лазера, работающего на данной частоте, можно селективно облучить второе вещество, не затрагивая первого. Не исключено, что мы станем свидетелями появления инфракрасной фотохимии, если удастся при действии лазерного пучка переводить молекулы на высокие колебательные уровни (и = 3, 4, 5 и т. д.) основного электронного состояния. [c.300]

    Двухквантовая фотохимия представляет интерес для всех областей техники, где приходится иметь дело с фотохимическими процессами в полимерах или стеклах, содержащих ароматические группы или добавки. Лазеры, где активной средой служат органические соединения,— другая важная техническая область, в которой возможность протекания двухквантовых реакций всегда следует принимать во внимание. [c.4]

    В настоящее время число публикаций по двухквантовой фотохимии очень велико. Можно сказать, что при освещении ближним УФ-светом растворов ароматических соединений в жестких средах двухквантовые реакции реализуются гораздо чаще, чем одноквантовые. За последние годы надежно установлено протекание двухквантовых реакций в жидких растворах при импульсном фотолизе. При импульсном фотолизе УФ-излучением лазеров, по-видимому, происходят двухквантовые реакции в результате поглощения второго кванта молекулой в синглетном возбужденном состоянии (см. раздел 11.8). [c.66]

    В спектральных приборах источником непрерывного УФ-излу-чения обычно является водородная разрядная лампа. В последнее время в фотохимии для облучения стали применять лазеры, дающие высокоинтенсивный, когерентный, монохроматический пучок света [61—64]. [c.26]

    В главе Фотохимия обсуждается природа различных фотохимических процессов, приводятся данные о свойствах ряда сенсибилизаторов и тушителей, источниках света, фильтрах и другом оборудовании (в том числе о лазерах), используемом для проведения фотохимических реакций. В шестой главе ( Хроматография ) подробно описаны основные виды хроматографии и указаны важнейшие адсорбенты, растворители, газы-носители, типы неподвижных фаз и свойства детекторов. В главе Экспериментальная техника перечислены свойства основных материалов, используемых в лабораторной практике, указаны составы растворов для мытья химической посуды, даны советы по очистке растворителей, по обнаружению в растворах перекисей и их удалению приведены химические методы определения некоторых газов и способы получения сухих газов перечислены распространенные растворители для кристаллизации и экстракции из водных растворов, а также высушивающие агенты и составы бань для нагревания и охлаждения указаны способы определения молекулярных весов. В конце главы приведены некоторые сведения, необходимые для безопасной работы с наиболе распространенными химическими веществами (данные о воспламеняемости, токсичности, взрывоопасности и т. п., средства для тушения, методы хранения). [c.6]

    Лазерная ИК-фотохимия иОг(ГФА)2 и его аддуктов в газовой фазе изучалась весьма обстоятельно авторами работ [214, 215]. Напомним, что молекулы иОг (ГФА) 2 в парах в значительной степени димеризованы, тогда как его аддукты мономерны. Было установлено, что при действии излучения соответствующей частоты и с плотностью энергии до 0,2 Дж/см на аддукты происходит отрыв нейтрального лиганда, а при действии на димер 1102 (ГФА) 2 - диссоциация димера, причем при действии излучения той же интенсивности на мономеры и02(ГФА)2 химических превращений не наблюдается. Фотодиссоциация аддуктов и димера происходит при воздействии как импульсного, так и непрерывного излучения. При облучении более мощными импульсами света СО2-лазера (плотность энергии около 1 Дж/см ) происходит глубокий распад аддукта и02 (ГФА)2 ТМФ с образованием нелетучего фторида уранила [214]. [c.181]

    Принципиально новые возможности открылись в химии с появлением мощных инфракрасных лазеров. Это область селективного воздействия лазерного излучения на вещество, названная мощной инфракрасной лазерохимией [13]. Ряд исследователей [14] оценили достижения в этой области, назвав их лазерной революцией в химии . Хотя попытки селективного действия света относятся к 1922 г., существенный скачок был сделан Павловым с сотр. в 1966 г. и Майером и др. в 1970 г. Значительный объем работ по лазерной селективной фотофизике и фотохимии был выполнен в Институте спектроскопии АН СССР [15]. [c.178]

    Первый и второй законы фотохимии применимы к любым фотохимическим реакциям. Третий и четвертый законы относятся главным образом к фотохимии органических соединений. Однокванто-вость поглощения связана с тем, что время жизни электронно-возбужденного состояния молекулы достаточно мало, а обычно используемые интенсивности света невелики (10 —10 квантов, поглощенных в 1 смз за 1 с). Если удается повысить интенсивность света (импульсный фотолиз, действие лазеров), или увеличить время жизни возбужденных состояний за счет устранения диффузионно-контролируемых процессов тущения (понижение температуры, увеличение вязкости среды), становится возможным поглощение кванта света молекулой, находящейся в электронпо-возбуж-деипом состоянии или одновременное поглощение двух квантов света молекулой, находящейся в основном состоянии. [c.132]

    Многоквантовые эффекты под действием ультрафиолетового или видимого лазерного излучения часто аналогичны наблюдаемым при однофотонном возбуждении соответствующим коротковолновым излучением. Однако инфракрасное многоквантовое возбуждение приводит к явлениям, которые было бы невозможно исследовать без использования лазеров. Вскоре после создания СОа-лазера (разд. 5.7) были проведены эксперименты по наблюдению химических превращений, индуцированных ИК-фотонами высокой интенсивности. Оказалось, что колебательная фотохимия, по крайней мере многоатомных молекул,— это очень широкая область. Хотя в большинстве случаев для достижения энергии разрыва связи требуется поглощение 10—40 ИК-фотонов, при воздействии на молекулу с сильной колебательной полосой поглощения мощного импульс-НОГО лазерного излучения легко происходит с )ото( )рагмента-ция. Например, молекула 5Рб диссоциирует при воздействии СОз-лазера с Х=10,6 мкм [c.76]

    Несмотря на то что с помощью исследованных к настоящему врс-менР1 лазерных систем можно получить сотни спектральных литой, очень немногие из них обладают достаточной интенсивностью для применения в фотохимии и аналогичных делен. В этом разделе указаны лазерные спстемы, нашедшие наибольшее применение. Почти невозможно перечислить все тппы выпускаемых лазеров и лазерного оборудования с этой целью мы отсылаем читателя к прекрасному руководству (12]. Приведенные ниже данные (табл. 187) заимствованы из нескольких источников [13—15], и их выбор несколько произволен. В по- [c.370]

    Обогащение дейтерия и изотопа выполнено при селективном фотолизе формальдегида. Молекула НзСО удачна для фотохимии тем, что ее предиссоциационный переход из верхнего возбужденного состояния имеет значительное время жизни, что обусловливает малую ширину линии возбуждения, много меньшую, чем изотопический сдвиг между соответствующими уровнями. Используя такие оптические разрешенные линии, можно селективно облучать молекулы и переводить соответствующие изотопы в продукты фотолиза СО и Нз. Физическое отделение продуктов фотолиза от формальдегида не представляет сложностей. Процесс молекулярной предиссоциации в лазерном разделении изотопов примечателен тем, что в нем селективность и энергию, необходимую для диссоциации, можно обеспечить в одной ступени одним лазером. [c.256]

    Среди лазеров на основе органических соединений с оптической накачкой наиболее глубоко изучены лазеры на электронных переходах в сложных органических молекулах. В результате техника ЛОС достигла весьма высокого уровня развития, необходимого при использовании таких сложных устройств, как лазеры, а ценные свойства ЛОС обеспечили им очень широкий круг применений в различных физико-химических исследованиях. Применение ЛОС прежде всего в спектроскопии, фотохимии, в исследованиях селективного воздействия лазерным излучением на вещество привело к возникновению или существенному развитию принципиально новых методов исследования, таких как двухфотонная спектроскопия, свободная от доплеровского уширения, многофотонная резонансная ионизационная спектроскопия, спектроскопия когерентного антистоксова комбинационного рассеяния, внутрире-зонаторная абсорбционная спектроскопия и др. Рассмотрению [c.197]

    Создание такого идеального источника света прежде всего позволило вернуться к идее фотохимического разделения изотопов, так как при помощи лазера можно селективно возбуждать почти любой формы атом или молекулу на квантовом переходе, имеющем изотопический сдвиг. Создание лазерных источников интенсивного ИК излучения открыло принципиальную возможность разделения изотопов путём селективного возбуждения колебательных уровней молекул определённого изотопного состава, т. е. методом колебательной фотохимии [16], который был успешно реализован в экспериментах с молекулой H l [17]. Но, вероятно, наиболее важно то, что лазеры позволили кардинально расширить рамки оптико-спектрального разделения изотопов за счёт новых методов изотопически-селективного воздействия лазерным излучением на вещество, которые были принципиально неосуществимы с дола-зерными источниками монохроматического излучения. [c.359]

    Таким образом, облучение органических красителей может приводить к самым разнообразным фотохимическим реакциям. В настоящее время природа этих процессов стала намного яснее и может быть объясненя с точки зрения современной органической фотохимии. Знание механизмов фотохимических реакций будет способствовать дальнейшей разработке методов предотвращения деструктивного влияния красителя при облучении как в технических, так и биологических процессах, а также позволит расширить область практического использования фотоактивности красителей. Кроме применения красителей в вышеприведенных случаях, можно указать также и на применение их в лазерах с пассивной модуляцией добротности [759—762], жидкостных лазерах [763—766а], химических дозиметрах [767—770], кислородных системах для космических кораблей [751], при защите от яркой вспышки света и в элементах памяти счетно-решающих устройств [209, 771], в фотографических процессах нового типа [103], фотоэлектрохимических преобразователях [772], катодах для топливных элементов [773— 775], детекторах газов [6, 776] или светочувствительных антикатодах э кинескопах для телевидения [777]. [c.466]


Смотреть страницы где упоминается термин Фотохимия и лазеры: [c.24]    [c.30]    [c.7]    [c.25]    [c.8]    [c.59]    [c.25]   
Возможности химии сегодня и завтра (1992) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Лазер

УАС-лазер лазеры



© 2025 chem21.info Реклама на сайте