Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические соединения водные растворы

    При бромировании ароматических соединений в качестве катализаторов используют галогениды металлов, иод, а в случае реакционноспособных веществ (фенолов, аминов)—воду (водный раствор брома). Рассмотрите механизм каталитического действия указанных выше веществ. [c.153]

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]


    При исследовании экстракционной способности водных растворов серной кислоты было установлено, что при определенной концентрации она отлично растворяла сульфиды, не затрагивая сернистые соединения иного строения, а также углеводороды, в том числе ароматические. использования серной кислоты как экстрагента [c.132]

    Атомы иода в ароматических иодистых соединениях иногда могут приобретать высшую степень валентности. Так, при действии хлора на иодбензол и аналогичные ему соединения в иг дифферентном растворителе (напрнмер, хлороформе) к атому иода присоединяется одна молекула хлора и образуется дихлорид иодбензол а, кристаллизующийся в виде желтых игл (Вильгеродт). При действии избытка водного раствора щелочи он превращается в и о д о з о б е н з о л, причем это прег ращение заключается в замещении хлора кислородом  [c.514]

    Сульфирование. Сульфирование ароматических соединений сильно тормозится небольшими количествами воды, присутствующей первоначально в реакционной смеси или образующейся в ней во время реакции [211]. Эта сильная зависимость от концентрации воды значительно усложняет изучение кинетики реакции в водных растворах серной кислоты. [c.451]

    Для извлечения из нефтяных фракций сульфидов многие исследователи пользовались водным раствором ацетата ртути, так как образующиеся комплексы сульфидов алифатического и цикланового строения растворимы в воде. Таким методом были получены сульфиды из иранской нефти [51]. Смесь сернистых соединений и ароматических углеводородов, выделенная из разбавленного водой кислого гудрона тракторного керосина иранской нефти, ректифицировали. Узкие фракции обрабатывали водным 0,7—1,0 М раствором ацетата ртути. К водному слою для разложения растворимых комплексов сульфидов добавляли горячий 5 н. раствор соляной кислоты. Сульфиды отделяли от водного слоя и нейтрализовали раствором щелочи. Производные тиофена, присутствовавшие во фракции, не растворялись в водном слое, а оставались в сернисто-углеводородной фазе. [c.119]

    Гидроксилирование. Ароматические соединения моя но перевести в производные фенольного типа путем воздействия на водные растворы радиации или реактива Фептона (перекись водорода и сульфат двухвалентного железа) [132]. Для получения хороших выходов при гпдро-ксилированип путем облучения Х-лучами водных растворов важно присутствие кислорода. Представляется вероятным, что ити реакции протекают через стадию образования гидроксильного свободного радикала с последующей атакой последнего па ароматическое кольцо. Типичные результаты суммированы в табл. 18. [c.467]


    Таким образом, представление о жесткой ориентации плоского ароматического кольца, которое следует из рентгеновского исследования структуры кристаллического фермента, своеобразно проявляется косвенным образом также и в термодинамике образования в водном растворе комплекса активного центра с ароматическими соединениями. [c.141]

    Сопоставляя влияние одних и тех же факторов — концентрации реагента, скорости вращения или периода капания электрода, константы скорости димеризации промежуточных продуктов— на значения потенциалов полуволны первой и второй катодных волн восстановления ароматических карбонильных соединений, можно сделать вывод, что все они действуют иа 1/2 и E i4 в противоположных направлениях. Пример зависимости потенциалов полуволны первой и второй волп восстановления бензальдегида в водных растворах на ртутном капельном электроде от концентрации бензальдегида представлен на рис. 7.20. [c.258]

    Замещенные амиды типа R ONR R" (где R и R" соответствуют алкильным радикалам) напоминают по легкости гидролиза простейшие амиды, ацильные же производные аро.матических аминов более стойки в это.м отношении. Гидролиз этих соединений водными раствора и щелочей обычно дает менее удовлетворительные результаты, чем гидролиз горячими минеральными кислотами. Ацетанилид и его гомологи при нагревании с обратным холодильником с 20%-ной соляной кислотой, с 48%0-ной бромистоводородной кислотой или же с 50%-ной серкой кислотой расщепляются с образованием свободных карбоновых кислот и солей ароматических аминов. Наличие заместителей в о-положении в остатке ароматического амина замедляет скорость гидролиза таких амидов. 2-Ацетиламино-т-ксилол почти не изменяется при кипячении с концентрированной соля- [c.288]

    Дальнейшим развитием работ Ингольда с сотрудниками бычо изучение нитрования ароматических соединений водной азотной кислотой с добавкой более сильной кислоты (серной или хлорной) 170] В этих условиях нитрованию были подвергнуты 2-фенилэтилсульфоновая и бензилсульфоновая кислоты Авторы считают наиболее вероятным, что в водных растворах нитрованию подвергаются анионы этих сульфоновых кисйот, причем их реакционная способность (к нитрованию) сравнима с реакционной способностью ароматических соединений, нитрующихся в органических растворителях по кинетике нулевого порядка [c.189]

    В лабораториях ароматические кислоты обычно получают окислением алкильных соединений водным раствором перманганата калия или разбавленной азотной кислотой при нагревании под давлением. В промыщ- [c.185]

    Нитрование водными растворами азотной кислоты или азотной кислотой, растворенной в органических растворителях, создает значительно более мягкие условия реакции и позволяет изучать кинетику в значительно более широкой области активностей ароматических соединений. Так, нанример, прп нитровании в уксусной кислоте таких сравнительно реакционноспособных ароматических соединений, как бензол, толуол, п-кси-лол или мезитилен, было замечено, что скорость нитрования их но зависит ни от концентрации, нп от природы ароматического соединения. С другой стороны, для менее реакционноспособных веш,еств, как хлорбензол, этиловый эфир бензойной кислоты, существует зависимость скорости реакции как от концентрации, так и от структуры ароматичо ого соединения [22, 156]. [c.450]

    Энергия актпвацпп для реакций серной кислоты в водных растворах равна 27.4 ккал по сравнению с 18,0 ккал для реакций с олеумом. Основываясь иа том, что теплота реакции трехокиси серы с водой составлж т 20,0 ккал/моль, Кавдрей и Девис определили, что эпергия активации для реакции ароматических соединений с трехокисью серы в водных растворах серной кислоты равна только 7.4 ккал/моль, это значительно ниже значения для той же реакции в олеуме. [c.451]

    Недавно в межфазных условиях на основе фталазина [993] н 1,6-нафтиридина [1556] были также получены соединения Рейссерта. Соединения типа I (К = КЬ или СНз) реагируют как с алифатическими, так и с ароматическими альдегидами или кетонами, давая продукты конденсации Ь и побочно спирт М с общим выходом, часто превышающим 90% [311, 886]. Эти превращения осуществляются в бензоле или ацетонитриле в лрисутствии 50%-ного водного раствора гидроксида натрия. Ре- [c.236]

    Другой способ определения полноты очистки основан на допущении такого рода марганцево-кислый калий в олиртовом растворе окисляет прежде всего непредельные соединения, остающиеся в исследуемом углеводороде, а затем уже самые ароматические углеводороды (это так называемая хамелеоновая проба). Методигса состоит в том, что к спиртовому раствору углеводорода (2 1) прибавляется i капля водного раствора KM11.O4. При этом наблюдается продолжительность сохранения розовой окраски. Для хорошо очищенных продуктов она составляет 2—3 мин. [c.410]


    Экстракция ароматических углеводородов из дизельных масел производится также и фурфуролом [84] при температуре выше температуры окружающей среды (60—80 °С). При промывании фурфуролом смесей, полученных путем крекинга газовых масел, кроме ароматических углеводородов, удаляются также металлические конгломераты и соединения серы [73, 76]. Третьим растворителем, применяющимся в промышленном масштабе для вымывания ароматических углеводородов из легких продуктов пиролиза, является водный раствор диэтиленгликоля. Эта экстракция, известная под названием метод Удекс [70, 71, 73, 76, 94, 951, впервые была применена Б 1950 г. В качестве новых растворителей был испытан ряд различных жидкостей, в том числе -цианэтиловый эфир [88], азеотроп-ная смесь углеводородов с цианистым метилом, комплекс фтористого бора с кислородными соединениями, фтористый водород [100] и т. д. Для выделения из продуктов пиролиза нефти толуола высокой чистоты пригодна вода [67]. Для удаления ароматических углеводородов из керосиновой фракции пригоден раствор 75—99,9% метанола [851 и жидкий аммиак [87]. [c.402]

    Изучено превращение 2, 4, 5-трихлорфенола в водных растворах персульфата при температуре его термического разложения. Показано, что в этих условиях, 2, 4, 5-трихлорфенол превращается в полиядерные соединения со средним числом ядер в цепи 2- 22, содержащие до 40% хлора и до 9% фенольных гидроксилов (в зависимости от условий- процесса). Проведение реакции в щелочной среде способствует образованию продуктов полисочетания ароматических ядер по С—О связи. [c.189]

    Удаление галоидов путем восстановления. Атом галоида, стоящий в ароматическом ядре водорастворимого соединения, например сульфокнслоты, может быть заменен па водород действием энергичного восстановления. В бензольнолм ряду сульфогруппа, повидпмому, незначительно затрагивается при восстановлении, в нафталиновом ряду а-сульфогруппа удаляется в виде сернистой кпслоты, а, 5-сульфогруппа не затрагивается. Наиболее употребительными восстановителями являются амальгама натрия в водном или спиртовом растворе и цинковая пыль в водном растворе аммиака пли гидроокись щелочного металла. Хотя амальгама натрия дает удовлетворительные результаты при восстановлении небольших количеств веществ, ее применение при работе с большими количествалп неудобно, так как в этом случае для окончания реакции требуется от одного дня до нескольких недель. [c.156]

    Уже давно замечено, что сульфирование-ароматических соединений является обратимым процессом. При нагревании суль-. -, фокислоты в кислом растворе и даже в чистой воде образуется серная кислота и продукт отщепления сульфогруппы от сульфокислоты [37]. Необходимо указать, что присутствие неорганической кислоты в водном растворе не только повышает температуру кипения раствора, но также значительно увеличивает скорость гидролиза. Особенно наглядную иллюстрацию вышеуказанному дают дурол- и пентаметилбензолсульфокислоты [38], частично гидролизующиеся при взбалтывании с 95%-ной серной кислотой уже при комнатной температуре. В этом случае равновесие между углеводородом и сульфокислотой настолько сдвинуто в сторону первого, что гидролиз обнаруживается даже в присутствии весьма небольшого количества воды, если только имеется неорганическая кислота, катализирующая реакцию. [c.203]

    Ароматические галоидные производные с галоидом в-бензольном ядре обладают иным характером, — галоид в них прочно связан с ядром и обь чно мол ет вступать в реакцию обмена.только прк высокой температуре с аммиаком хлор- и бромбензол реагируют лишь в автоклаве гфи 180—200° в присутствии медных солей или порошкообразной меди концентрированные водные растворы щелочей отщепляют >(лор от хлорбензола только при температуре около 300°. Таким образом, связь галоида с ароматическим кольцом несравненно прочнее связи галоидл с остатком насыщенного углеводорода. Напомним, однако, что и среди соединений жирного ряда встречаются такие,, у которых атомы галоида вступают в реакцию с большим трудом. Это соединения, у которы.х атомы галоида находятся при двойных связях (ср. стр. 105), например СНзСН = H I. Атом галоида, вступивший в бензольное ядро, несомненно также связан с не вполне насыщенным атомом углерода если исходить из формулы бензола Кекуле, то можно даже считать, что он находится у двойной связи, [c.513]

    Реакция Гомберга — Бахмана — Хея является одним из немногих методов, позволяющих получать несимметричные производные бифенила. Арилирование ароматических соединений проводят действием водного раствора щелочи на хорошо перемешиваемую смесь соли диазония с большим избытком ароматического соединения. По-видимому, собственно реакции арили-рования предшествует переход соли диазония в растворимую в органическом слое диазокислоту, которая, подобно диазоацетату в реакции со спиртом, претерпевает гомолитический разрыв [c.460]

    Бромирование сульфокислот. Бромированию подвергалось весьма большое число сульфокислот, практически во всех случаях реакщш проводилась в водном растворе. В зависимости от связанных с ароматическим ядром групп получается или бромсульфокислота, или арилбромид (отщепление сульфогруппы), или смесь обоих соединений. Наличие гидроксила или аминогруппы в орто- или тгара-положении к сульфогруппе благоприятствует замещению последней на бром. Легко идет замещение и в полиал-килбензолсульфокислотах. [c.214]

    Селективное окисление нефтяных сульфидов. Нефтяные сульфиды окисляют в мягких условиях водными растворами сильных окислителей (перекиси водорода, азотной кислоты), а также органическими гидроперекисями. Целесообразно окислять сульфиды в среде сернистоароматического концентрата, свободного от парафино-нафтеновых углеводородов и смол. Методику, предложенную для окисления перекисью водорода индивидуальных сульфидов [36], применили для окисления нефтяных сульфидов сернисто-ароматических концентратов [37—39]. Условия окисления были такими, при которых углеводороды и другие сернистые соединения окислялись незначительно. Правда, меркаптаны легко окисляются в дисульфиды, однако этот процесс идет с меньшей скоростью, чем окисление сульфидов. [c.113]

    Пикриновая кислота представляет собой сильную кислоту, значительно ионизированную в водном растворе. Дпссоциа-ция ее сопровр-ждается частичной перегруппировкой в нитроновую кислоту, и это, по-видимому, является причиной углубления цвета при растворении пикриновой кислоты в воде. Соли пикриновой кислоты хорошо кристаллизуются многие из них, например пикрат аммония и пикрат калия, трудно растворимы в воде. В сухом виде соли пикриновой кислоты взрывают при ударе. Многие органические основания также образуют красивые труднорастворимые пикраты поэтому пикриновая кислота широко применяется для выделения и очистки таких оснований. За счет остаточных валентностей пикриновая кислота способна также соединяться со многими ароматическими (особенно многоядерными) углеводородами с образованием труднорастворимых молекулярных соединений. Так, например, нафталин образует настолько трудно растворимый пикрат СюНз СбН2(Н02)зОН, что его можно использовать для количественного определения этого углеводорода. [c.562]

    Методом комплексообразования выделена часть сернистых соединений из топлив ТС-1 (ГОСТ 10227—62) и ДА (ГОСТ 4749—49) [17]. Вначале из топлив хроматографически выделяли сернисто-ароматические концентраты, содержавшие 0,63 вес. % (ТС-1) и 0,183 вес. % (ДА) общей серы, которые затем обрабатывали 0,47 М раствором ацетата ртути. Образовавшиеся водорастворимые комплексы осаждали хлористым натрием. Кипячением с 8 п. раствором соляной кислоты комплексы разлагали. Выделившиеся сернистые соединения экстрагировали серным эфиром, нейтрализовали 3%-ным водным раствором щелочи и сушили над прокаленным сульфатом натрия. Остатки ртути отделяли перколяцией сернистых соединений через силикагель. Оказалось, что водный раствор ацетата ртути извлекая из нефтяных фракций не только сульфиды, но и некоторое количество сернистых соединений иного строения. [c.121]

    Эта реакция протекает особенно легко с ароматическими и жирно-ароматическими карбонилсодержащими соединениями. Для проведения восстановления 100 г металлического Zn амальгамируют в течение 5 мин. раствором 5—10 г Hg l, в 100—150 мл воДы с 5 мл конц. НС1, после чего сливают водный раствор, приливают 75 мл воды, 100 мл конц. НС1 и 40—50 г восстанавливаемого вещества и нагревают реакционную смесь несколько часов с обратным холодильником при кипении. Иногда применяют и механическое размешивание. [c.399]

    Свойства фенолов. 1. Фенолы имеют большую кислотность, чем спирты, уступая, однако, в этом отношении карбоновым кислотам. Они растворяются в водных растворах щелочей, причем их соли, феноляты, лишь слабо гидролизуются водой. Двуокись углерода осаждает 41Снолы из водных щелочных растворов, и таким способом они могут быть отделены от карбоновых кислот. Следовательно, ароматический остаток усиливает кислотные свойства гидроксилыюй группы. Это вызывается, по-видимому, той же причинои, которая обусловливает сильно кислотный характер енолов. Более же сильную кислотность енолов по сравнению с насыщенными спиртами мы объясняли тем, что в этих соединениях гидроксильная группа находится у двойной связи в фенолах гидроксильная группа также связана с ненасыщенным атомом углерода (по формуле бензола Кекуле она находится у двойной связи ).  [c.538]

    Многоатомные фенолы с гидроксильными группами в мета-положении отличаются от остальных ароматических соединений той легкостью, с которой они восстанавливаются до насыщенных соединений циклогексанового ряда. Это связано с их способностью реагировать таутомерно карбонильные формы этих соединений, вследствие их ненасыщенного гидроароматического характера, особенно склонны присоединять водород. Так, флороглюцин восстанавливается уже амальгамой натрия в водном растворе до флороглюцита, с жл1-триоксициклогексана, а резорцин —до дигидрорезорцина  [c.795]

    К реакциям анодного замещения относится также процесс электрохимического роданирования, протекающий при электролизе ароматических соединений в водном растворе роданистого калия. Так, при электролизе с высоким выходом получен роданфенол  [c.223]

    Силикагель — высушенный желатинообразный диоксид кремния, который получают из силиката натрия. Силикагели очень широко используются в хроматографии для разделения смесей нефтепродуктов, высших жирных кислот (ВЖК) и из сложных эфиров, ароматических аминов, иитро- и нитроэопроизводных органических соединений н др. В отличие от активированных углей силикагель — гидрофильный сорбент, и поэтому мало пригоден для сорбции из водных растворов (легко смачивается водой). Силикагели используют для осушки воздуха, обезвоживания неводных растворов — бензина, керосина, масел и т. д. Активность силикагеля зависит от содерн<ания в нем воды — чем меньше воды, тем выше его активность (по Брокману)  [c.150]

    К давно известным клатратам относятся соединения Ni( N)2- NH3 с различными ароматическими углеводородами. Кристаллы Ы1(СМ)2-МНз-СбНб получают перемешиванием водного раствора Ni( N)2-NH3 с бензолом в большом высоком бюксе, закрытом пришлифованной крышкой. [c.611]

    Кроме этого Ф. получают сплавлением солей бензолсульфокислоты со щелочами. Ф. применяют в производстве фенолформальдегидных смол, капролактама, пикриновой кислоты, красителей, пестицидов, лекарственных препаратов (салициловой кислоты, салола, аспирина), водный раствор (карболовая кислота) применяют для дезинфекции помещений, белья, мест общественного пользования и др. Из Ф. готовят алкилфенолы, которые служат для стабилизации бензинов, масел на их основе прои зводят поверхностно-активные вещества. Ф. является первым членом гомологического ряда фенолов—ароматических соединений, содержащих гидроксильные группы, непосредственно связанные с ароматическим ядром. [c.260]

    Если специфическая адсорбция ионов на поверхности электрода является обратимой, то форма спектров AR/Ro—X при этом обычно ие изменяете , а изменение кривых AR/Ro—Ео при = onst может быть связано с соответствующим изменением емкости. Поэтому сильное искажение спектров электроотражения может служить указанием на образование химических соединений. Такие данные были получены в водных растворах KI при больших анодных потенциалах серебряного и золотого электродов. При этом на кривых AR/Ro—I в области энергии квантов света h =h / k, соответствующей энергии диссоциации соединения Ме—1, наблюдался минимум. Аналогичные минимумы наблюдались в спектрах электроотражения р-полярпзованного света от поверхности свинцового и индиевого электродов при адсорбции на них молекул анилина. Они были связаны с частичным переходом л-электронов ароматического ядра в незаполненную зону проводимости металла при образовании адсорбционного комплекса с переносом заряда. [c.184]


Смотреть страницы где упоминается термин Ароматические соединения водные растворы: [c.189]    [c.775]    [c.69]    [c.69]    [c.495]    [c.373]    [c.458]    [c.464]    [c.548]    [c.382]    [c.92]    [c.107]    [c.434]    [c.258]    [c.209]    [c.355]    [c.140]   
Радиационная химия органических соединений (1963) -- [ c.168 , c.174 , c.246 , c.247 ]




ПОИСК







© 2025 chem21.info Реклама на сайте