Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кондуктометрия Концентрация

    Прямая кондуктометрия. Концентрация электролита может быть определена по электропроводности раствора, так как в определенных пределах возможна прямая пропорциональность между этими величинами. Метод широко используют для определения индивидуальных электролитов в растворе. Возможно также определение электролита в смесях в случаях, когда концентрации примесей не изменяются. [c.76]


    В методе прямой кондуктометрии концентрацию вещества определяют по электропроводности раствора. При определенных условиях в известных пределах возможна прямая пропорциональность между этими величинами. [c.22]

    В ходе кондуктометрического титрования происходит замещение конов, находящихся в анализируемом растворе и участвующих в реакции с титрантом, ионами титранта, электропроводность которых больше или меньше электропроводности ионов анализируемого раствора. Этим обусловлено получение восходящих или нисходящих ветвей кривых кондуктометрического титрования. После точки эквивалентности титрант уже не расходуется, поэтому обычно получают восходящие прямые, угол подъема которых зависит от электропроводности титранта. Точность индикации точки эквивалентности определяется углом пересечения прямых он должен быть возможно более острым, тогда точность определения достигает 0,3%. Обычная же точность метода до 1%. Наиболее острый угол пересечения прямых получается при кислотно-основном кондуктомет-рическом титровании, так как ионы Н+ и 0Н вносят особенно большой вклад в электропроводность раствора (см. табл. Д.21). Наряду с реакциями кислотно-основного взаимодействия в кондуктометрии можно применять многие реакции осаждения и некоторые реакции комплексообразования. В принципе кондуктометрия годится и для индикации точки эквивалентности в окислительно-восстановительном титровании, если оно сопровождается изменением концентрации ионов НзО+. Но все же лучшие результаты дают в зтом случае другие методы индикации. [c.324]

    В прямой кондуктометрии по электрической проводимости находят степень и константу диссоциации электролитов, константу устойчивости комплексных соединений, произведение растворимости солей, концентрацию растворенного электролита, примесь сильного электролита в плохо проводящем растворителе и т. д. [c.58]

    Кондуктометрическую ячейку ополаскивают дистиллированной водой и 2—3 раза небольшим объемом исследуемого (наиболее разбавленного) раствора. Затем наливают такой объем исследуемого раствора, чтобы уровень жидкости превышал на 3—4 см верхний край электродов. При всех измерениях объем раствора в ячейке должен быть одним и тем же, поэтому наполняют ячейку до метки, помещают п термостат и выдерживают 10—15 мин. Одновременно погружают в термостат стаканы или колбы с раствором КС1 других концентраций. Через 10—15 мин ячейку подключают к кондуктометру, не вынимая ее из термостата. Измеряют сопротивление раствора несколько раз, чтобы получить воспроизводимые значения трех цифр на магазине сопротивлений кондуктометра. Далее переходят к измерению R более концентрированного раствора. Для этого из ячейки выливают раствор, сопротивление которого измерено, ополаскивают ее исследуемым раствором 2—3 раза, заполняют, как указано выше, и погружают в термостат. [c.62]


    Как практически определяют концентрацию методом прямой кондуктометрии Почему в основном используется графический путь решения Какой вид имеет градуировочный фафик  [c.240]

    Методом прямой кондуктометрии можно определять концентрацию растворенного вещества, степень диссоциации электролита, растворимость труднорастворимых соединений и т. д. [c.152]

    Кондуктометрия основана на измерении электропроводности анализируемых растворов, изменяющейся в результате химических реакций и зависящей от природы электролита, его температуры и концентрации раствора. [c.26]

    Прямая кондуктометрия позволяет решать многие практические задачи и осуществлять непрерывный контроль производства. Широко применяется определение концентрации солевых растворов с помощью специальных солемеров. Кондуктометрию используют для контроля процесса очистки воды и, в частности, для контроля качества дистиллированной воды, оценки загрязненности сточных вод, при определении общего содержания солей в минеральной, морской и речной воде. Методом кондуктометрии осуществляют контроль операций промывки осадков и регенерации ионитов. Используя экстракцию дистиллированной водой, определяют чистоту малорастворимых осадков или органических препаратов. [c.76]

    Кондуктометрия. Этот термин объединяет методы определения физико-химических величин и методы анализа, основанные на измерении электропроводности (ЭП) электролитов, т. е. ионных проводников, находящихся в виде истинных водных и неводных растворов, коллоидных растворов или расплавов. Таким образом, в отличие от предыдущих методов кондуктометрический анализ основан только на изменении концентрации ионов в межэлектрод- [c.5]

    Косвенная кондуктометрия заключается в определении одного компонента./В многокомпонентном растворе, при использовании для анализа, кроме кондуктометрии, еще второго метода физико-химического анализа (определения рефракции, вязкости, pH, плотности и т. п.). К косвенной кондуктометрии относится также определение концентрации различных газов, когда после реакции указанных газов в растворе с определенными веществами изменяется электропроводность раствора. Метод косвенной кондуктометрии используется например, для определения содержания углерода в стали. В результате сжигания пробы углерод превращается в СОг. После пропускания СО2 в раствор щелочи электропроводность раствора изменяется. По величине изменения электропроводности можно судить о количестве СО2, а следовательно, и о содержании углерода в стали. [c.89]

    Кондуктометрия. Измерение электропроводности растворов называют кондуктометрией. Кондуктометрию используют не только для определения степени и константы диссоциации электролитов, но и для определения концентрации электролитов в растворах, их растворимости, основности кислот. Большое практическое значение имеет метод кондуктометрического титрования. [c.42]

    Электрохимические Ж. а. объединяют группу приборов, в к-рых значения выходных сигналов (эдс, сила тока и др.), пропорциональных концентрациям контролируемых компонентов, определяются электрохим. явлениями. Последние происходят в электродных системах, погруженных в жидкости. Каждая система включает два и более электродов, электролит и внеш. электрич. цепь. Действие кондукто-метрических Ж. а. основано на измерении электрич. проводимости электролитов. Области применения определение концентраций к-т, солей и оснований, минер, в-в, растворенных, напр., в сахарном соке контроль состава воды для питания энергетич. установок и т. д. предел обнаружения Ю" М (см. также Кондуктометрия). К этим приборам близки диэлькометрические, с помощью к-рых регистрируют зависимость диэлектрич. проницаемости от состава жидкости эффективная область использования-анализ воды и орг. в-в (см. также Диэлькометрия). [c.150]

    Метод прямой кондуктометрии может быть использован для определения концентрации сильно разбавленных растворов и, в частности, растворимости труднорастворимых электролитов. В насыщенном растворе малорастворимой соли концентрация так мала, что молярная электрическая проводимость раствора практически такая же, как при бесконечном разведении, то есть Тогда концентрацию электролита можно найти как отношение удельной и молярной электрических проводимостей раствора или, более точно, учитьшая электрическую проводимость воды, с помощью выражения [c.204]

    Что невозможно определить методом прямой кондуктометрии а) характеристики качества дистиллированной воды б) концентрацию натрия и калия в морской воде в) общее содержание примесей в технической серной кислоте г) общее содержание солей в минеральных водах Ответ поясните. [c.219]


    Непосредственное измерение электропроводности раствора электролита можно использовать для определения его концентрации. Этот принцип положен в основу прямой кондуктометрии. Широкое распространение кондуктометрия получила в контроле различных химико-технологических процессов. В частности, прямая кондуктометрия применяется для контроля процессов очистки воды. Значение удельной электропроводности чистой воды, рассчитанное из ее ионного произведения и подвижности ионов водорода и гидроксида при бесконечном разбавлении, составляет при 18 °С 3,810 Ом -см . Приготовление воды столь высокой чистоты связано с большими трудностями. Даже предельно чистая вода, полученная перегонкой в вакууме, имеет удельную электропроводность (4 - 6)-10 Ом -см . Для лабораторных целей применяют воду с электропроводностью порядка М0 Ом -см , что соответствует содержанию солей 1 мг/л. [c.156]

    Метод прямой кондуктометрии основан на измерении электропроводности анализируемого раствора. Концентрацию определяемого компонента находят по калибровочному графику, устанавливающему связь между концентрацией вещества в растворе и его электропроводностью. Для построения калибровочного графика необходимо точно воспроизвести солевой состав анализируемой пробы или доказать отсутствие в ней примесей. [c.304]

    Прямая кондуктометрия предполагает измерение электропроводности анализируемого раствора и нахождение неизвестной концентрации по калибровочному графику [1080, 1370] или с помощью схемы с регистрирующим прибором компенсационного типа [1081]. Метод удобен для автоматизированного контроля производственных процессов. [c.137]

    Прямая кондуктометрия. В методах прямой кондуктометрии концентрация вещества определяется по электропроводности раствора, если между ними существует прямая пропорциональность. Метод используют для анализа однокомпонентных растворов. Возможно также определение одного из компонентов в двухкомпонентном растворе, если концентрация второго компонента иеизменна. [c.89]

    Границы обычно измеряются до и после наложения электрического поля каким-нибудь физическим методом, таким, как рефрактометрия или кондуктометрия. Концентрация вещества в проводящей жидкости, характеристики последней и шод робностн методики, в том числе количественная оценка фракций, описаны в соответствующих частных статьях. [c.115]

    Электрохимические методы анализа основаны на использовании зависимости электрических параметров от концентрации, природы и структуры вещества, участвующего в электродной (электрохимической) реакции или в электрохимическом процессе переноса зарядов между электродами. Согласно рекомендациям ИЮПАК электрохимические методы анализа можно классифицировать следующим образом 1) методы без протекания электродной реакции, в которых строение двойного электрического слоя в расчет не принимается (кондуктометрия при низких и высоких частотах) 2) методы, основанные на электродных реакциях в отсутствие тока (потенциометрия) или под током (вольтамперометрия, кулонометрия, электрогравимет-рия). [c.102]

    Предварител[)НО определяют константу кондуктометрической ячейки. В ячейку наливают такой объем раствора K I точно известной концентрации, чтобы электроды были полностью погружены в него. Ячейку помещают в термостат, термостатируют 4—5 мин, подключают электроды к клеммам кондуктометра и измеряют сопротивление Ro раствора КС1 между электродами. Константу К рассчитывают по формуле [c.134]

    Методы, основанные на измерении электрических и магнитных свойств. Так, определяя концентрацию растворов электролитов, измеряют электропроводность. Этот метод называется кондуктометрией. Им также определяют влагу в различных материалах, примеси в сплавах и т, д. Для автоматической регистрации и контроля производства применяют специальные кондуктометрические приборы. Например, солеме-рам г устанавливают содержание солей в котловой воде, в пароперегревателях, [c.17]

    Значительно шире применяются методы кондуктометрии без титрования. В некоторых случаях непосредственно по измерению электропроводности раствора можно определить концентрацию электролита (в случае отсутствия других электролитов). Подобным же способом можно определить, например, содержание серной или уксусной кислот в их концентрированных растворах. Безводная H SO (а также СН3СООН) почти не проводит тока электропроводность сильно увеличивается в зависимости от содержания воды. Применяются также методы, связанные частично с химической реакцией. Так, например, для непрерывного определения содержания СО2 в печных газах эти газы пропускают через раствор, содержащий [c.438]

    Кондуктометрия — это метод электрохимической индикации, в котором для нахождения точки эквивалентности используют шзменение электропроводности в ходе титрования. Поэтому говорят также о титровании по электропроводности. i В отличие от электрохимических величин, используемых в лругих методах индикации, таких, как потенциометрия, амие-рометрия, вольтамперометрия, суммарная электропроводность электролита аддитивно складывается из электропроводности всех находящихся в растворе ионов независимо от того, принимают они участие в реакции или нет. Поэтому кондуктомет-рические измерения отражают не конкретные процессы, происходящие при титровании, а изменения, происходящие в растворе в ходе титрования и связанные с вкладом ионов, участвующих в реакции, в суммарную электропроводность всех ионов, находящихся в растворе. При титровании по электропроводности точность определения тем меньще, чем больше в растворе концентрация посторонних ионов, не участвующих в реакции. Ияаче говоря, наиболее удовлетворительные результаты получаются при титровании растворов с минимальным содержани-<ем посторонних электролитов. [c.318]

    Осциллометрию часто называют высокочастотным титрованием. Но поскольку этот метод можно применять не только для индикации точки эквивалентности ири титровании, но и для прямых измерений концентрации электролитов, исследования кинетики процессов (например, процесса кристаллизации) и др., названию осциллометрия следует отдать предпочтение (по аналогии с названиями потенциометрия, кондуктометрия, ам-перомехрия и др.). Осциллометрия сравнительно новый электрохимический метод анализа. По-видимому, этим объясняется тот факт, что осциллометрии недостаточно уделяют внимания при обучении студентов, и отчасти этим же объясняется медленное внедрение метода в научные исследования и практику. Другая причина заключается, вероятно, в многообразии возможных конструктивных форм измерительных устройств, подробное теоретическое описание которых часто отпугивает исследователей. [c.327]

    Преимуществом метода по сравнению с кондуктометрией является отсутствие гальванического контакта электродов, т. е. электроды не погружают в анализируемый раствор таким образом, можно сказать, что измерения проводят без электродов . При этом устраняют основные помехи, вызываемые поляризационными сопротивлениями или емкостными влияниями. Можно также не опасаться, что раствор пробы или образующиеся продукты реакции разрушат поверхность электродов. Это же относится к адсорбции, отравлению и блокировке электродов выделяющимися осадками. Наконец, отпадает необходи- ость таких важных для кондуктометрии операций, как подготовка, очистка и сохранение электродов. На фоне этих пре-т1 муществ, пожалуй, стоит смириться с небольшой и один раз возникающей трудностью, связанной с определением оптимальной области концентраций для проведения титрования на конкретном приборе. [c.328]

    Для определения констант уравнения Фрейндлиха К и 1/п находят значения логарифмов х/т и Сравн и строят график линейной формы изотермы в координатах gxlm—1 Сравн. При проведении адсорбции на твердом адсорбенте определяют начальные и равновесные концентрации адсорбата в растворе. Выбор аналитического метода зависит от природы ПАВ. Для органических кислот, как правило, применяют титрование раствором щелочи в присутствии фенолфталеина. При наличии таких приборов, как потенциометры, кондуктометры или интерферометры, индикаторное титрование может быть заменено соответствующим физико-химическим методом анализа. Эти методы требуют построения кривых титрования или градуировочного графика по растворам известной концентрации, после чего определяют искомые концентрации путем прямых измерений (методику прямой кондуктометрии см. гл. 9, потенциометрическое титрование — гл. 10). Кондуктометрия и потенциомет-рия применимы только для анализа ионогенных ПАВ, например кислот, оснований, солей. С помощью жидкостного интерферометра можно определять концентрации растворов ПАВ любой природы (спиртов и т. д.). [c.174]

    Оборудование и реактивы две хроматографические колонки с кранами катионит в Н+-форме (50 г) анионит в 0Н -форме (50 г) кондуктометр с ячейкой две колбы вместимостью 200 мл пи-петки воронки раствор СаС12 концентрации 10 мае. долей, % растворы Н230< и Na2 Oз концентраций 5 мае. долей, %. [c.234]

    Определение момента завершения кулонометрического титрования. Почти все способы индикации конечной точки реакции, используемые в титриметрических методах анализа, пригодны й при кулонометрическом титровании. Применяются цветные индикаторы (в основном при кислотно-основных и окислительно-восстановительных реакциях), а также ряд инструментальных методов (потенциометрия, кондуктометрия, амперометрия, спектрофотометрия, радиометрия и т. д.). Из них наиболее часто применяют потенциометрию и амперометрию, особенно биамперометрию. Большая концентрация вспомогательного реагента отрицательно сказывается при использовании кондуктометрического метода индикации конечной точки, так как электропроводность является функцией всех ионов в растворе, и поэтому небольшое ее изменение в процессе кулонометрического титрования трудно обнаружить. [c.203]

    Зависимость частоты от логарифма концентрации выразится кривой 2, приведенной на рис. 92. Все выводы, полученные ранее для -ячейки, остаются в силе и для данного случая, iia рис. 96 приведена принципиальная схема очень простого кондуктометра, Б котором использован С-генератор релаксационных (негармонических) колебаний н -ячейки типа жидкост ной виток . Такой кондуктометр характеризуется следующими особенностями возможностью измерять электропроводность растворов от 0,1 до 0,8 сим-см , т. е. до-статочио концентрированных растворов, ири сравнительно низких рабочих частотах —не выше 0,5 Мгц, низким напряжением питания— до 1,5 в, простотой и малыми размерами. Этот прибор можно использовать для титрования концентрированных растворов. [c.145]

    На основании результатов исследования электропроводности растворов гликолята кальция в этиленгликоле разработан кондуктометри-ческий метод определения содержания оксида кальция в технических объектах. Метод заключается в обработке навески технического образца горячим раствором этиленгликоля (температура 80-90°С) с последующим измерением удельной электропроводности раствора. Содержание свободного оксида кальция при этом определяется на основе значения удельной проводимости раствора с использованием аналитических выражений, связы-ваюпдах значение удельной электропроводности и концентрацию раствора. [c.69]

    Установка кондуктометра на питательной воде дает возможность контролировать качество среды по общему солесодержанню, а также работу деаэратора по обеспечению режима удаления угольной кислоты, устанавливая ее присутствие в питательной воде. Это необходимо для правильного ведения коррекционной обработки питательной воды. Практически в настоящее время ввиду отсутствия методики непосредственного определения содержания углекислоты при ее малых концентрациях способ оценки Ы O по удельной электрической проводимости является единственным. Нахождение углекислоты может проводиться по графикам я=/ (HGO ), рассчитанным для данного содержания основных ионов, от которых зависит солесодержание питательной воды. [c.124]

    КОНДУКТОМЕТРИЯ (от англ. ondu tivity - электропроводность и греч. metreo-измеряю), совокупность электрохим. методов анализа, основанных на измерении электропроводности V. жидких электролитов, к-рая пропорциональна их концентрации. Достоинства К. высокая чувствительность (ниж граница определяемых концентраций 10 - 10" . М). достаточно высокая точность (относит, погрешность определения 0,1-2%), простота методик, доступность аппаратуры, возможность исследования окрашенных и мутных р-ров, а также автоматизации анализа. Методы К. бывают постояннотоковые и переменнотоковые последние могут быть низкочастотньгми (частота тока < 10 Гц) илн высокочастотными (> 10 Гц). Различают контактную и бесконтактную К. в зависимости от наличия или отс>тствия контакта между электролитом и входными цепями измерит, прибора. Наиб, распространены контактный низкочастотный и бесконтактный высокочастотный методы. [c.452]

    Действие кондуктометрнческих Т. основано на регистрации изменения уд. электрич. проводимости анализируемого р-ра. Согласно закону Кольрауша, для разб. р-ра наблюдается линейная зависимость между его уд. электрич. проводимостью и концентрацией. Наиб, распространение получили Т. контактные двухэлектродные и бесконтактные высокочастотные с емкостной измерит, ячейкой. Преимуществом последних является отсутствие гальванич. контакта анализируемого р-ра с электрич. цепью измерит, ячейки. Принцип их действия основан на взаимод. ектромагн. поля высокой частоты с анализируемым р-ром в ячейке емкостного или индуктивного типа. Наиб, часто применяют Т. с емкостными измерит, ячейками-стеклянными сосудами, на наружной пов-сти к-рых закреплены два металлич. электрода, подключенных к источнику напряжения высокой частоты (см. Кондуктометрия). [c.597]

    Измерив объем титранта в конце титрования, рассчитывают концентрацию С анализируемого р-ра по формуле V = (концентрации выражены в моль/л). Теоретически необходимо добавить такой объем титранта, к-рый содержит кол-во реагента, эквивалентное кол-ву определяемого компонента в соответствии со стехиометрией р-ции между ними при условии, что эта р-ция практически необратима. Этот объем титранта соответствует точке эквивалентности (т.э.), или моменту стехиометричности. Практически определяют, однако, не т.э., а конечную точку титрования (к.т.т.), к-рая должна максимально совпадать с т.э. для получешгя миним. погрешности титрования. Фиксировать к. т. т. можно по измененшо окраски добавленного индикатора (выбор к-рого осуществляют по теоретически рассчитанной кривой титрованпя) или по достаточно резкому изменению к.-л. физ. характеристики р-ра, зависящей от концентрации определяемого в-ва,-тока, окислит.-восстановит. потенциала, оптич. плотности, электрич. проводимости и кол-ва электричества. Соотв. различают амперометрическое титрование, потенциометрич., фотометрич., кондуктометрич. и кулонометрич. титрование (см. Потенциометрия, Фотометрический анализ, Кондуктометрия и Кулонометрия). В этих титриметрич. методах кривая титрования представляет собой зависимость измеряемой физ. величины от объема (или массы) титранта. [c.598]

    Эксперим. изучение Э. э.- важное напраЕпение физико-химического анализа, поскольку зависимость Э.э. от соЬгава р-ра позволяет судить о концентрации солей, качественный состав к-рых известен (см. также Кондуктометрия). Измере- ния X используют для определения подвижностей ионов. [c.455]

    Кондуктометрия - это метод количественного анализа, основанный на измерении электрической проводимости растворов. Оп широко используется в лабораторной практике для определения концентрации сильньк и [c.148]

    Кондуктометрия - метод электрохимического анализа, основанный на измерении электропроводности раствора, являющейся функцией концентрации определяемого иона в растворе. Электропроводностью раствора называется величина, обратно пропорциональная его электросопротивлению и зависящая от природь растворенного вещества, его концентрации и температуры. Наиболее распространенное средство измерения - классический контур с электролитической ячейкой с двумя платиновыми электродами, покрытыми платиновой чернью, находящейся в одном из плеч мостика Уитстона. [c.303]

    Широкое распространение простой диссоциативной модели С. Аррениуса, приводяш ей к уравнению (231), можно объяснить тем, что рассчитанные из нее значения степени диссоциации а удовлетворительно совпадают со значениями этой величины, установленными в кри-оскопических, потенциометрических, кондуктометри-ческих и спектральных исследованиях, во всем диапазоне концентраций слабых электролитов. В то же время для сильных электролитов с К > наблюдается [c.404]


Смотреть страницы где упоминается термин Кондуктометрия Концентрация: [c.116]    [c.116]    [c.209]    [c.104]    [c.191]    [c.620]    [c.149]    [c.108]    [c.30]   
Теоретическая электрохимия Издание 3 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кондуктометр

Кондуктометрия



© 2025 chem21.info Реклама на сайте