Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобозева теория

    Н. И. Кобозев, С. С. Васильев и Е. И. Еремин (в теории энергетического катализа, 1937 г.) высказали предположение, что для реакций в разрядах нет необходимости искать какие-то особые химически активные частицы, отличные от активных частиц, участвующих в обычных термических реакциях, т. е. активные частицы в разряде могут быть теми же, что и при обычных реакциях (свободные атомы, свободные радикалы и колебательно возбужденные молекулы). Однако пути возникновения этих частиц в разряде, а следовательно, и концентрации их, могут быть совсем иными, чем при обычных условиях. [c.253]


    В дальнейшем эта теория была развита рядом ученых. Н. И. Кобозев связал замедление молизации водорода с энергией адсорбции водорода металлом. [c.624]

    В 1939 г. Н. И. Кобозев предложил теорию, получившую название теории активных ансамблей. В этой теории решался вопрос о числе атомов металла в каталитически активном центре. Поверхность катализатора считалась неоднородной, и было принято положение о наличии областей, ограниченных потенциальными барьерами. [c.658]

    Теория активных ансамблей (Кобозев, 1939 г). Согласно этой теории каталитически активным центром является совокупность свободных атомов катализатора (ансамбль), находящихся на отдельном участке блока поверхности катализатора. Эти атомы не входят в кристалли- [c.180]

    Каталитические реакции разделяются на три основные группы реакции гомогенного, гетерогенного и микрогетерогенного катализа. Н. И. Кобозев считает, что современные каталитические теории вообще бессильны объединить эти три группы общим механизмом, так к ак они неверно трактуют природу активных центров и их строение. Главным препятствием к обобщению каталитических процессов является принимаемая всеми концепция кристаллической природы активных центров при гетерогенном катализе, что и пресекает пути перехода к гомогенным и ферментативным реакциям. [c.145]

    Для разрешения задачи распределения частиц по теории вероятности Н. И. Кобозев применил известную формулу Смолуховского [c.146]

    Однако мультиплетная теория считает активные центры образованиями кристаллической природы и придерживается принципов структурного и энергетического соответствия между строением молекул реагентов и решеткой катализатора. Теория ансамблей Кобозева полностью отрицает активность кристаллической фазы п кристаллическое строение активных центров, а также критикует жесткое доминирование принципа структурного соответствия в гетерогенном катализе , так как строение ансамблей определяется не структурными, а скорее энергетическими факторами. Н. И. Кобозев считает также, что активные центры (ансамбли) не являются элементами кристаллической решетки катализатора, их можно отделить от кристаллической фазы и создать искусственно на подходящем носителе, что будто бы в десятках случаев уже осуп ествлено. [c.148]

    Отсюда можно сделать практически важный вывод главной причиной влияния дисперсности на активность является образование максимально эффективной поверхности при определенных размерах кристаллов катализатора, что является критерием для получения эффективных технических катализаторов. Эти работы убедительно доказывают активность кристаллической фазы, а не отдельных атомов, как считает Н. И. Кобозев. Г. К. Боресков пишет, что нет никаких оснований считать кристаллическое вещество лишенным каталитической активности [25]. С. Л. Киперман и М. И. Темкин [50] проверили работы Н. И. Кобозева о высокой каталитической активности очень разбавленных слоев железа на угле и нашли, что железо находится всегда не в виде атомов, а в виде кристаллов, т. е. основные положения теории ансамблей становятся сомнительными. .  [c.151]


    Получили признание две теории теория мультиплетов (акад. А. А. Баландин) и теория активных ансамблей (проф. Н. И. Кобозев). [c.397]

    Н. и. Кобозев показал, что на основе применения математического аппарата для вероятностных событий можно рассчитать число атомов в активном ансамбле, площадь области миграции и активность единичного ансамбля, исходя из экспериментально определяемой зависимости удельной активности от степени заполнения. Это позволяет количественно проверить основные положения теории. Теория ансамблей такую проверку выдержала. [c.184]

    Постоянные значения п и области миграции Кобозев рассматривает как одно из важных доказательств правильности исходных положений теории. Для адсорбционных катализаторов с малой концентрацией активной фазы (а=10 2—10 ) наблюдается проявление максимальной каталитической активности при большом разведении слоя. [c.111]

    Кобозев И. И. Обобщение теории промежуточных продуктов и скрытые формы катализа.— Журн, физ. химии, 1959, т. 33, с. 1002—1015, [c.209]

    Таким образом, приняв тезис об исключительной активности атомно-дисперсной фазы, необходимо так или иначе объяснить наличие активности у поверхности кристаллических катализаторов. Поэтому не случайно, что Кобозев в первой работе по теории ансамблей [14] наметил, а затем развил в последующих работах [18, 19, 49] взгляд, подкрепленный соответствующим математическим аппаратом, согласно которому на кристаллической поверхности образуется дополнительная миграционная мозаика, в которой происходит образование активных ансамблей атомной природы. Физическому обоснованию этой модели посвящены работы Полторака [50, 51], который в своей термодинамической теории неидеальных микрокристаллов специально рассмотрел вопрос о существовании атомной фазы на поверхности неидеально- [c.76]

    Н. И. Кобозев и др. Такого же рода вопросы возникают и в теории неоднородной поверхности катализатора, если от формальной математической схемы для вывода кинетических уравнений перейти к физически обоснованной теории. [c.143]

    Н. И. Кобозев в своем выступлении сказал, что электронная теория мало что объясняет и предсказывает. Это утверждение голословно, ибо за последние 10 лет получ ны экспериментальные факты, подтверждающие представления электронной теории. [c.81]

    СКРЫТЫЕ ПАРАМЕТРЫ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ И ОБОБЩЕНИЕ ТЕОРИИ ПРОМЕЖУТОЧНЫХ ПРОДУКТОВ Н. и. Кобозев [c.90]

    Особого внимания заслуживают выдающиеся работы Н. И. Кобозева по изучению процесса формирования активных центров из разрозненных молекул или атомов катализатора. В этих исследованиях для некоторых химических реакций получены сведения о минимальном числе атомов в агрегате, необходимых для появления у формирующейся частицы вещества каталитической активное Элементарная группа атомов, проявляющая каталитическую актив-ность Швана активным ансамблем . Молекулы, атомы или ионы вещества могут двигаться по поверхности носителя и группироваться в ансамбли, однако эти движения ограничены определенными и весьма небольшими областями миграции . Н. И. Кобозев (1939 г.) показал, что по изменению удельной активности в зависимости от заполнения поверхности носителя катализатором можно рассчитать величину ансамбля, т. е. число атомов в ансамбле и среднюю величину области миграции. Весьма интересна связь, устанавливаемая этой теорией между типичным гетерогенным катализом и действием сложных ферментных катализаторов. Теория ансамблей является одной из важных частей общей теории приготовления катализаторов. [c.8]

    Некоторые исследователи, например Н. И. Кобозев и его сотрудники [103], придавали большое значение вопросу концентрации активного компонента на носителе. Хотя, как нам представляется, этот вопрос не носит принципиального характера для общей теории катализа, однако во многих случаях установлено, что удельная активность катализатора растет по мере понижения концентрации активного компонента на носителе, а в некоторых случаях удалось установить и точки максимума для этой зависимости [104]. При оценке результатов экспериментов по сравнительной активности катализаторов на носителях надо иметь в виду, что, как показали электронномикроскопические исследования [105], активные компоненты (металлы или окислы) часто образуют на носителе скопления кристаллов или сферолитов. [c.67]

    Этот путь в 1939 г. предложил Н. И. Кобозев в своей теории активных ансамблей [54]. Обзор основных результатов, полученных методом теории ансамблей, содержится в обобщающей статье Н. И. Кобозева [55]. Основными в теории ансамблей являются две идеи метод получения молекулярных моделей — активных ансамблей— и способ расчета состава активного ансамбля, т. е. числа атомов в активном центре, исходя из опытных данных по каталитическим свойствам серии специально приготовленных образцов. Неустойчивые к ассоциации молекулы металлов Ме Н. И. Кобозев предложил стабилизировать на поверхности адсорбента, т. е. получать на каталитически неактивном носителе слой металла в молекулярно-дисперсном, а не в кристаллическом состоянии. Такие катализаторы были названы адсорбционными. Их удалось получить при малых степенях заполнения металлом поверхности носителя. Для описания свойств адсорбционных катализаторов используется молекулярная теория флуктуаций плотности. [c.98]


    Некоторые исследователи (И. Тафель, Н. И. Кобозев и др.) иридерживаются в вопросе водородного перенапряжения иных взглядоь. Они считают, что замедленной стадией является не разряд ионов водорода, а процесс молизации,т. е. пятая стадия процесса. Эта теория водородного перенапряження, получившая название рекомбинационной, достаточно обоснована для некоторых металлов, в отношении которых наблюдается параллелизм между величиной перенапряжения на них водорода и каталитической их активностью но отношению реакции рекомбинации водородных атомов. [c.41]

    В теории активных ансамблей гетерогенного катализа (Кобозев) предполагается, что активными центрами служат атомы, беспорядочно расположе[[ные на поверхности кристаллического тела (аморфная, докристаллическая фаза). [c.449]

    Теория активных ансамблей (Н. И. Кобозев, 1939). В соответствии с данной теорией каталитический процесс происходит на группе атомов, называемых активным ансамблем. В отличие от мультиплетной теории атомы активного ансамбля не являются элементами кристаллической решетки катализатора и могут свободно мигрировать в пределах определенной области поверхности катализатора, называемых блоками миграции. Блоки миграции ограничены потенциальными барьерами, возникающими за счет микроскопических трещин, наличия примесей, неоднородности твердой поверхности. Избирательность катализа объясняется миграцией атома и изменением геометрических параметров ансамбля. [c.300]

    Теория активных ансамблей Н. И. Кобозева (1938). Активный центр Н. И. Кобозев рассматривает как докристаллическую струк-туру — ансамбль из п атомов, стабилизированный на поверхности носителя . Такие катализаторы названы адсорбционными. Для их иолучепия используются очень разбавленные растворы солей металлов. Степень заполнения (а) поверхности катализатора -- в пределах [c.183]

    В случае металлических катализаторов (Pt, Pd, Fe и др.) центром каталитической активности, согласно теории атомных ансамблей (Н. И. Кобозев, 1936), является докристаллическая фаза, представляющая собой отдельные атомы ката- [c.141]

    Таковы основные положения мультиплетной теории, в которой неразрывно связаны принципы структурного и энергетического соответствия. При рассмотрении реакции гидрирования этилена Кобозев также исходит из двухстадийной схемы реакции, идущей через адсорбционную и реакционную стадии. С увеличением теплового эффекта адсорбционной стадии скорость ее должна возрастать, а скорость реакционной стадии уменьшаться. Поэтому реакции гидрирования этилена должно отвечать некоторое оптимальное значение теплоты образования поверхностного соединения. [c.88]

    В теории активных ансамблей активный центр рассматривается, как докристаллическое образование из нескольких атомов, п-атом-ный ансамбль , закрепленный на поверхности носителя адсорбционными силами. Неустойчивые к ассоциации атомы активной фазы катализатора Кобозев предложил стабилизировать на поверхности адсорбента, т. е. получать на каталитически ие активио.м носителе сло1Рметалла в атомарно-дисперсном, а не в кристаллическом состоянии. Такие катализаторы были названы адсорбционными. [c.103]

    Теория активных ансамблей (Н И Кобозев, 1939) считает активными центрами атомы, беспорядочно расположенные на поверхности кристаллического тела (аморфного, докристаллическая фаза) Теория применима для объяснения механизма катализа адсорбционными катализаторами (на поверхность носителя нанесено очень небольшое количество молекул катализатора — 0,01 часть того количества, которое требуется для мономолекулярного слоя, рис 5 2) [c.161]

    Но после того как Тейлор [12] ввел в гетерогенный катализ обоснованное опытом понятие активного каталитического центра (АКЦ), создались предпосылки к синтезу представлений теории промежуточных соединений с конкретными данными о строении поверхности твердого тела. Первый шаг в этом направлении был сделан Баландиным [13] в мультиплетной теории, установившей связь между геометрическим строением катализируемой молекулы и геометрией расположения поверхностных атомов катализатора, и впервые поставившей вопрос о том, что активный центр должен иметь определенный числовой состав и определенную геометрическую конфигурацию (принцип геометрического соответствия). Позднее Кобозев [14] в теории активных ансамблей дал метод определения числового состава активного центра и его производительности на основании статистического анализа экспериментальных данных по адсорбционным катализаторам. По Кобозеву [15], числовой состав АКЦ определен числом разрывающихся и образующихся на нем связей в данном процессе. Этими концепциями вместо качественного тейлоровского описания в понятие АКЦ внесена химическая и физическая определенность, позволяющая (поскольку расширены и ко нкретизирОва-ны сведения о находящемся в поверхностном слое катализатора компоненте АПС—АКЦ) по-новому подойти к структуре и свойствам АПС, т. е. вернуться на новой основе к ряду положений теории промежуточных продуктов. [c.67]

    Ввиду экономии места здесь будут только кратко отмечены работы последнего времени, посвященные энергетическим факторам в катализе. В 1957 г. интерес к этим вопросам усилился, это видно из того, что М. И. Темкин [77] и Н. И. Кобозев [78] вывели такие же уравнения, как уравнения мультиплетной теории. В ней используются энергии связей из сводки Коттрелла [79], однако применение новых данных из сводки [c.325]

    В связи с облегчением протекания лимитирующей стадии при более анодных значениях потенциала на скорость процесса большое влияиие оказывают строение и реакционная способность нитросоединений. На примере восстановления нитробензола и его производных на никелевых и никель-медь-железных катализаторах на глине [6] показано, что скорость реакции возрастает с увелигчением положительного значения константы заместителей Гаммета и смещения потенциала катализаторов аналогично результатам на платиновой черни [27]. Выявленная корреляция позволяет судить о реакционной способности ряда нитросоединений и скорости их восстановления по потенциалу катализатора в момент реакции. Скорость восстановления производных ди-яитродифениловых эфиров ускоряется применением смешанных протонодонорных растворителей, содержащих спирты (метанол, этанол) и аммиак 7]. Расчет числа атомов в активном центре, по Кобозеву, в случае гидрирования сложных по строению органических соединений на палладиевых катализаторах на окиси алюминия указывает на его двухатомность [8]. Универсальность двухатомного ансамбля при гидрогенизации органических соединений отмечали Кобозев и др. Она следует из принципа геометрического соответствия муль-типлетной теории Баландина. [c.51]

    Сущность этого рода активации теорией пока не раскрывается. Однако, если рекуперация энергии при катализе действительно связана, как это предполагает Н. И. Кобозев [71], с экси-тонпыми явлениями, то вопрос об эффекте аггравации в общей проблеме катализа приобретает очень важное значение. Видимо, он может быть поставлен в один ряд с вопросами об электронном механизме хемосорбции, о матричном эффекте в катализе и т. п. В самом деле, ведь экситонные явления не могут не играть важной роли при взаимодействии реагента с катализатором, тем более с полупроводниковым катализатором. Как было отмечено Э. Л. Нагаевым [76], экситонная связь в хемосорбции рассматривается и как таковая, т. е. в чистом Виде , и как составляющая часть гибридной связи. Адсорбционные экситоиы в полупроводнике локализованы, но оптические и тепловые экситоны перемещаются, перенося энергию по кристаллу или вдоль системы сопряженных связей макромолекулы. Захват энергии реакции аг-граватором, очевидно, можно рассматривать как образование тепловых экситонов, а перенос ее от периферии катализатора к точке возникновения химической связи с молекулой реагента можно считать перемещением теплового экситона. [c.114]

    И. И. Кобозев выдвинул теорию активных ансамблей, согласно которой ответственной за акт катализа является докристаллическая фаза катализатора. [c.681]


Библиография для Кобозева теория: [c.355]    [c.85]   
Смотреть страницы где упоминается термин Кобозева теория: [c.169]    [c.342]    [c.397]    [c.659]    [c.659]    [c.165]    [c.105]    [c.297]    [c.80]    [c.81]    [c.25]    [c.78]    [c.185]    [c.158]   
Курс теоретической электрохимии (1951) -- [ c.302 ]

Физическая химия Издание 2 1967 (1967) -- [ c.438 ]




ПОИСК





Смотрите так же термины и статьи:

Кобозев



© 2025 chem21.info Реклама на сайте