Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин а и цепи

    Рис. 21-17. а-Спираль, тип свертывания белковой цепи, обнаруживаемый как в фибриллярных, так и в глобулярных белках. -Спираль была предсказана Л. Полингом и Р. Кори на основе экспериментов по модельному построению белков с учетом длин связей и валентных углов, полученных в результате рентгеноструктурных исследований отдельных аминокислот и полимеров из двух-трех аминокислот. Впоследствии эта структура была обнаружена в белках волос и шерсти, в кератине кожи и в таких глобулярных белках, как миоглобин и гемоглобин. [c.316]


    В белке волос и шерсти, а также других кератинах а-спирали многократно скручены друг с другом в многожильные тяжи, которые образуют видимые глазом нити. Цепи белков шелка вытянуты во всю длину (а не свернуты в спираль) и соединены с параллельными цепями водородными связями в листы, показанные на рис. 21-2,а. В глобулярных белках цепи не являются полностью вытянутыми или полностью свернутыми в а-спираль чтобы молекула имела компактную структуру, она должна быть надлежащим образом деформирована. В молекуле миоглобина (см. рис. 20-25) 153 аминокислоты белковой цепи свернуты в восемь витков а-спирали (обозначенные на рисунке буквами А-Н), которые в свою очередь свернуты так, что в результате получается компактная молекула. Витки Е и Р образуют карман, в котором помещается группа гема, и молекула кислорода может связываться с атомом железа этого гема. Подобным же образом построена молекула гемоглобина, которая состоит из четырех миоглобиновых единиц (см. рис. 20-26). Небольшой белок цитохром с (см. рис. 20-23) имеет меньше места для витков а-спирали. 103 аминокислоты этого белка свернуты вокруг его группы гема подобно кокону, оставляя к ней доступ только в одном месте. У более крупных ферментов, например трипсина (223 аминокислоты) и карбоксипептидазы (307 аминокислот) в центре молекулы имеются области, где белковая цепь делает ряд зигзагов, образуя несколько параллельных нитей, скрепленных водородными связями подобно тому, как это имеет место в молекуле шелка. [c.317]

    Молекула гемоглобина человека, подобно гемоглобину других млекопитающих, состоит из четырех полипептидных цепей (каждая из которых содержит одну гем-группу) и способна обратимо присоединять четыре молекулы кислорода. Уже много лет назад было показано, что равновесное связывание кислорода гемоглобином описывается S-образной кривой, приведенной на рис. 15.12, которая отличается от аналогичной кривой для миоглобина. Для миоглобина, содержащего одну гем-группу в молекуле, следует ожидать кривую равновесия, отвечающую реакции [c.440]

    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]


    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]

    Далее, путем модификации остатка пропионовой кислоты в боковой цепи порфиринового кольца был введен второй имидазольный лиганд, соответствующий проксимальному гистидину природных переносчиков кислорода. Интересно, что все структурные элементы активного центра миоглобина или гемоглобина, которые существенны для связывания кислорода, присутствуют [c.368]

    НЫМИ участками одной и той же цепи. Такие связи очень важны, например в гемоглобине. [c.455]

    Методом, разработанным Сенгером (разд. 14.3), было обнаружено, что молекула гемоглобина млекопитающих содержит четыре полипептидные цепи, к каждой из которых присоединена гем-группа. У большинства млекопитающих гемоглобины имеют цепи двух типов (называемые а- и -цепями), по две цепи каждого типа в молекуле. В нормальном гемоглобине взрослого человека а-цепи построены из 140 аминокислотных остатков, -цепи — из 146. У других млекопитающих число аминокислотных остатков в цепях почти такое же. Последовательность аминокислотных остатков полностью известна для полипептидных цепей нормального гемоглобина человека, для многих аномальных гемоглобинов человека (см. разд. 15.8) и для гемоглобинов многих видов животных. Последовательность первых нескольких остатков в цепях нормального гемоглобина взрослого человека следующая  [c.440]

    Иногда небольшие изменения окружающей среды могут вызвать серьезные изменения в форме белка, что скажется на его функциях. Например, легкое возрастание pH крови изменяет молекулу гемоглобина так, что она становится способной проходить к внутренней поверхности легких и в молекуле открывается атом железа, в результате легко связывается кислород. При понижении pH цепь снова сворачивается, помогая выделить кислород после переноса его к клетке, где он необходим. [c.455]

    Молекула гемоглобина построена как тетрамер из двух аналогичных глобинов (полипептидных цепей) неодинаковой длины. В центре белка находится простетическая группа, образованная [c.359]

    Принято считать, что процесс денатурации сопровождается раскручиванием полипептидных цепей, изменением структуры, характерной для природного белка. В коагуляте денатурированного гемоглобина или денатурированного овальбумина раскрученные полипептидные цепи различных молекул данного белка настолько переплетены между собой, что их уже нельзя разделить, чем и объясняется нерастворимость денатурированного белка. Некоторые химические реагенты, к числу которых относятся сильные кислоты, сильные щелочи и спирты, служат сильными денатурирующими средствами. [c.394]

    Даже Фрэнсис чувствовал себя задетым. Он уже работал в Кавендишской лаборатории, когда Брэгг попробовал установить, как сворачивается полипептидная цепь. Более того. Крик был участником обсуждения, во время которого совершили главную ошибку, касавшуюся формы пептидной группы. Тут бы ему и оценить выводы из экспериментальных наблюдений с обычной своей критичностью, но он не сказал ничего дельного, хотя вообще-то никогда не уклонялся от того, чтобы высказать критические замечания в адрес окружающих. В других случаях он с раздражающим откровением указывал, что тут-то и тут-то Перутц и Брэгг ошиблись в выводах, толкуя свои результаты по гемоглобину. Несомненно, эта открытая критика была одной из причин, вызвавших недавнюю гневную вспышку сэра Лоуренса. С точки зрения Брэгга, Крик только и делал, что совал палки в колеса всей лаборатории. [c.51]

    Лайнус Карл Полинг (род. 1901 г.) — выдающийся американский химик, один из немногих ученых, которому была дважды присуждена Нобелевская премия (1954 г. — по химии, 1962 г. — премия Мира). В 1970 г. Л. Полингу была присуждена Ленинская премия за укрепление мира между народами. Один из создателей метода ВС, теории гибридизации, концепции резонанса, электроотрицательности и др. Внес огромный вклад в создание молекулярной биологии (спиральное строение полипептидной цепи, существование гемоглобина 8 и т. д.). На русский язык переведены его книги Не бывать войне , Природа химической связи , Общая химия и др. [c.137]


    Изменение конформации полипептидных цепей гемоглобина при связывании кислорода — пример так называемой аллостерии. Известны аллостерические формы и у других белков, преимущественно у фермен- [c.443]

    Предполагают, что в некоторых белках несколько а-спиралей соединяются, образуя более толстый пучок полипептидных цепей Некоторое количество таких пучков может образовывать еще более объемистый пучок цепочек, напоминающий многожильный кабель (рис. 73). В других белках (гемоглобин, миоглобин) одна а-спираль свернута в сложный клубок (рис. 74). [c.177]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Из тканей гемоглобин выносит углекислый газ, молекулы которого присоединяются к аминогруппам, содержащимся в полипептидных цепях. [c.651]

    Вторичные структуры миоглобина и гемоглобина представлены главным образом а-спиралями. Восемь отрезков полипептидной цепи являются относительно прямолинейными ю-спиралями эти отрезки содержат 80% аминокислотных остатков всей цепи, остальные 20% остатков приходятся на места сгибов, соединяющие между собой ja-спираль-ные отрезки. При укладывании цепи (третичная структура) образуется полость, в которой расположена гем-группа. [c.439]

    Первичная структура обоих типов цепей довольно близка — примерно половину одних и тех же мест в цепях занимают одинаковые остатки (обратите внимание на выпадение гистидина между положениями 1 и 2 в а-цепи). Молекулы гемоглобинов некоторых беспозвоночных состоят из цепи только одного типа. [c.440]

    В молекуле гемоглобина гем-группы расположены далеко друг от друга (3000 пм), поэтому прямого взаимодействия между ними недостаточно, чтобы объяснить это явление. Однако было найдено, что присоединение кислорода или другого лиганда изменяет форму свернутой полипептидной цепи и благодаря взаимодействию между соседними цепями этот эффект передается. [c.442]

    Ниже, при рассмотрении синтеза белка, будет отмечено, что ген, направляющий синтез одной из полипептидных цепей гемоглобина, [c.458]

    Эритроидные стволовые клетки служат предшественниками содержащих гемоглобин эритроцитов. Вспомним (гл. 4, разд. Д, 7), что гемоглобины млекопитающих состоят из двух а-цепей и еще двух других цепей — либо , либо у, либо б, либо е. Гемоглобин взрослых в основном имеет структуру а2 2, но имеется также небольшое количество гемоглобина 0202. Для эмбриона на ранних стадиях развития характерен гемоглобин 0282, но на последующих стадиях е-цепи замещаются двумя другими, свойственными эмбриональному гемоглобину цепями, а именно °Y и Генетические исследования показали, что гены е-, у-, - и 6-глобина тесно сцеплены [188]. Почему же в отдельном эритроците присутствует гемоглобин только одного типа Видимо, дело в том, что для данного набора генов существует только один промотор. Если после каждого гена имеется сигнал-терминатор, то очевидно, что будет идти транскрипция только того гена, который ближе всех прилегает к промотору. В случае потери на каком-то этапе развития этого гена начнет транскрибироваться следующий ген и т. д. таким образом могут происходить нарастающие постепенные изменения в выражении гена в эритроцитах. Еще одна особенность процесса дифференцировки эритроцитов — это его чувствительность к гормону эритропоэти-ну, гликопротеидному гормону, образующемуся в почках [184—186]. Под действием эритропоэтина в дифференцирующих стволовых клетках начинается интенсивный синтез гемоглобина, и они окончательно превращаются в эритроциты [186а]. [c.364]

    На рис. 85 схематично изображена структура цепи Р-гемогло-бина. Черные точки изображают отдельные аминокислоты (их 146), связанные в цепь. Последовательность этих аминокислот образует первичную структуру этого фрагмента белковой молекулы. Конформация цепи в трехмерном пространстве, изображенная фигурой, похожей на свернутую змею. Рис. S5. Пространственная отражает третичную структуру структура цепи р-гемоглобина цепи. Внутри обведенной фигуры [c.508]

    Гемоглобин состоит из двух а-цепей и двух р-цепей, которые отличаются друг от друга и от цепи миоглобина лишь небольшими деталями, но в основных чертах имеют большое сходство с последней. Каждая из четырех составляющих гемоглобин цепей содержит гем-группу, образуя вокруг нее гидрофобную полость, как и в миоглобине. а-Цепь состоит из 141 аминокислотного остатка, а р-цепь — из 146 остатков. Молекулярная масса гемоглобина равна примерно 64500. Отдельные цепи не связаны ковалентно, но удерживаются друг возле друга, по-видимому, в основном за счет гидрофобных связей. Подобно мпоглобинам, гемоглобины различного происхождения несколько отличаются последовательностью аминокислот в цепях. Кроме того, известно много разновидностей патологических видоизменений гемоглобина человека. Детальную информацию о последовательности аминокислотных остатков и структур пептидных цепей можно найти в работе Дикерсона и Гейса [12]. [c.375]

    В начале 60-х гг. был завершен аминокислотный анализ белка гемоглобина. Цепь р состоит из 146 аминокислот. Вся транскрибируемая часть гена должна содержать 438 нуклеотидов, т. к. генетический код триплетен (146 3 =438). Этот маленький з часток нужно идентифицировать на одной из хромосом, в состав которой входит нить ДНК длиной несколько сантиметров. После того, как этот участок выявлен, его нужно выделить и накопить в большом количестве, чтобы определить последовательность нуклеотидов в составе анализируемого отрезка ДНК-молекулы. [c.66]

    Гемоглобин обратимо связывает кислород, так что в условиях новыщеиного парциального давления кислорода, которое существует в легких, предпочтительна ассоциация кислорода с белком. Напротив, в тканях, которым необходим кислород, кисло-родгемоглобиновый комплекс диссоциирует, и кислород переносится к другому кислородсвязывающему гемопротеину — миоглобину, белковая часть которого состоит из одной полипептидной цепи. Миоглобин содействует переносу кислорода крови в клетки мыщц, которые затем запасают кислород как источник энергии [233]. [c.360]

    Близость порфирииовой системы к определенным остаткам пептидной цепи гемоглобина может стерически препятствовать связыванию СО или О2 с Ре(П). Чтобы оценить влияние такого стерического эффекта, Трейлор и сотр. разработали два варианта [c.363]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]

    Синтезированная недавно модель кобальтзамещенного гемоглобина приведена на схеме 6.1 [245]. Длинная боковая цепь обеспечивает координацию пиридинового кольца с центральным атомом кобальта. Комплекс Со(П) и этого так называемого петлеобразного порфирина обратимо реагирует с молекулярны.м кислородом при низких температурах (от —30 до — G0° ), но боковая цепь лишь в незначительной степени увеличивает сродство кислорода к таким модельным соединениям по сравнению с жслсзопорфириновыми системами. [c.371]

    Иапример, фетичная структура молекулы гемоглобина (миоглобина), включающая гем с атомом железа, представляет собой ша[ ообразный клубок (глобулу). Часть пептидной цепи, которая не образует спирали, содержит аминокислоты с отрицательным зарядом. [c.271]

    Гетероциклические ядра составляют основу для построения многочисленных гомологических рядов, содержащих углеводородные остатки в виде боковых цепей, а также всевозможные функциональные группы. К гетероциклическим соединениям относятся, п1 щмо упоминавшихся уже хлорофилла и гемоглобина, многие другие важные природные вещества. Среди них алкалоиды — азотсодержащие растительные физиологически активные вещества, среди которых есть и сильные яды, и важные лекарства (хинин, никотин, стрихнин, резерпин). Гетероциклические ядра составляют основу многих антибиотиков (например, пенициллина, тет-рациклинов). Пуриновые и пиримидиновые основания входят в состав н1/клеиношх кислот — материальных носителей наследстеен-пости, веществ, играющих важнейшую роль в процессах б1 ( син-теза белка. [c.133]

    Пептидные цепи глобулярных белков сильно изогнуты, свернуты и часто имеют форму жестких шариков — глобул. Молекулы глобуляр ных белков обладают низкой степенью асимметрии, они хорошо раство римы в воде, причем вязкость их растворов невелика. Это прежде всего белки крови — гемоглобин, альбумин, глобулин, многие протеолитичео ские ферменты и др. [c.375]

    В схеме не указаны имеющиеся в молекуле боковые цепи (—СНз, —СН= СН>, —СН2СН2СООН и др.). Само 16-членное кольцо (без Ме) называется скелетом порфирина. В центре порфирина находится комплексообразователь, связанный атомами азота в гемоглобине — ион Ре , в хлорофилле — нон Mg +. Вся структура соединена с белковой частью (глобином, состоящим из четырех полипептидных цепочек), без которой ни гемоглобин, ни хлорофилл не могут осуществлять свои биохимические функции. Гем обусловливает красный цвет крови. Установлено, что у иона Ре-+ шесть координационных мест, из них четыре удерживают его в плоскости кольца, а два перпендикулярны этой плоскости, причем одно из них связывает гем с глобином, а другое—с молекулой кислорода. Гемоглобин обратимо присоединяет кислород и разносит его по кровеносной системе из легких в каждую клетку тела. [c.207]

    Предположение о том, что 70% цепи находится в спиральной конформации, подтверждается результатами, полученными методом дейтерообмена. Скоулоди (1959) 01бнаружила при раосмотрбн и двухмерной проекции Фурье единичной ячейки миоглобина тюленя, что, несмотря на совершенно различный аминокислотный состав, миоглобины тюленя и кашалота им еюг чрезвычайную сходную третичную структуру. Перутц (1960) на основании трехмерного анализа гемоглобина пришел к заключению, что каждая из четырех субъединиц этой молекулы структурно сходна с миоглобином. При анализе миоглобина с разрешением в 2 А (этого еще недостаточно для атомного разрешения) группа Кендрью (1961) получила возможность сделать некоторые выводы о последовательности части аминокислот в миоглобине. [c.711]

    В состав молекул некоторых белков входят только полипептидные цепи. Такие белки называют простыми. Однако у многих белков молекулы состоят из полипептидных цепей и других групп или молекул. Молекула гемоглобина человека, например, состоит из четырех полипептидных цепей и четырех гемов (ееж —органическое ионное соединение). Такие белки называют сложными белками, а небелковую часть — про-стетической группой. [c.396]

    Взаимосвязь между генами и молекулами белка можно проследить на примере разных форм гемоглобина, обнаруженных в эритроцитах человека. В 1949 г. было установлено, что у некоторых людей, страдающих серповидноклеточной анемией, эритроцит содержит форму гемоглобина (гемоглобин S), которая отличается от гемоглобина эритроцитов большинства людей (гемоглобин А). Различие этих форм невелико две а-цепи молекулы гемоглобина S идентичны а-цепям молекулы гемоглобина А, а -цепи различаются одним аминокислотным остатком. -Цепь гемоглобина А имеет в шестом положении, считая от ЫНа-конца полипептидной цепи, остаток глутаминовой кислоты, в то время как -цепь гемоглобина S имеет в этом положении остаток валина все другие остатки аминокислот те же, что и в гемоглобине А. [c.453]

    Установлено, что три нуклеотида выбирают аминокислоту для включения в полипептидную цепь можно сказать, что ген представляет собой последовательность трехбуквенных слов (названных кодонами), составленных при помощи четырехбуквенного алфавита — А, Т, G, С для ДНК и аналогично А, U, G, С для РНК. Таким образом, 146 кодонов, 438 букв (плюс несколько кодонов, служащих сигналами начала и прекращения синтеза) должны составлять ген, кодирующий синтез -цепи гемоглобина, содержащей 146 аминокислотных остатков. Каждая молекула РНК производит сотни -цепей в зрелом эритроците имеется около 100 000 000 молекул гемоглобина. [c.461]

    У человека существует, однако, несколько известных мутаций, изменяющих аминокислотную последовательность в а-цепи или в -цепи гемоглобина так, что легкость, с которой окисляется атом железа, возрастает, в результате чего и развивается ферригемоглобинемия. Одна из таких мутаций приводит к замене остатка гистидина в положении 58 а-цепи на остаток тирозина. Боковая цепь тирозина содержит оксибензольное кольцо, которое, обладая свойствами кислоты, не притягивает протона и не приобретает положительного заряда. Электростатическое поле, удерживающее электрон железа, в этом случае не образуется, й железо(И) гем-групп в двух цепях молекулы гемоглобина окисляется до железа(III). Возникающее заболевание называют ферригемоглобинемией по а-цепям. [c.468]

    Почему ферригемоглобинемия возникает при замещении остатка гистидина в положении 58 а-цепи или в положении 63 -цепи гемоглобина на остаток тирозина Почему эта болезнь не развивается при замене гистидина аргинином  [c.470]


Смотреть страницы где упоминается термин Гемоглобин а и цепи: [c.100]    [c.363]    [c.271]    [c.252]    [c.439]    [c.439]    [c.440]    [c.468]   
Основы биологической химии (1970) -- [ c.97 , c.109 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Гемоглобин



© 2025 chem21.info Реклама на сайте