Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлоорганические соединения реакции с галогенидами металло

    Термо- и огнестойкие полимеры получают реакцией фенолов или Ф(2 либо с галогенидами металлов (трихлорид молибдена, тетрахлорид титана, оксихлорид циркония, гексахлорид вольфрама), либо с алкоксидами металлов (триметоксид алюминия, тетраметок-сид титана), либо с металлоорганическими соединениями (ацети-лацетонаты). Так, окрашенная в красный цвет, модифицированная титаном смола может быть получена конденсацией с параформальдегидом продукта, образующегося при взаимодействии феиола [c.113]


    Реакция между гидридом щелочного металла (гидрид натрия или лития) и соединениями, содержащими активную метиленовую группу, например антрацен, трифенилметан, акридин, флуорен и инден, приводит к получению металлоорганических соединений, способных служить в качестве сокатализаторов. Эти сокатализаторы применяют в сочетании с галогенидами металлов IV—VI групп, например с четыреххлористым титаном, и получают катализаторы Циглера, способные полимеризовать этилен и другие а-олефины с образованием высокомолекулярных продуктов [48]. [c.112]

    Замещение металла в металлоорганическом соединении другим металлом служит наилучшим способом получения многих металлоорганических соединений. Как правило, новое металлоорганическое соединение КМ можно с успехом получить только в тех случаях, когда М находится перед М в ряду активности металлов, в противном случае необходимо искать какие-либо другие пути сдвига равновесия. Таким образом, обычно КМ — малореакционноспособное соединение, а М — более активный металл, чем М. Чаще всего в качестве реагента КМ используют К2Н , поскольку алкилртутные соединения [279] легко синтезировать, а ртуть расположена в конце ряда активности металлов [301]. Таким способом были получены алкильные производные Ы, N3, К, Ве, Mg, А1, Оа, 2п, С(1, Те, 5п и других металлов. Важное преимущество этого метода перед реакцией 12-37 состоит в том, что получаемые металлоорганические соединения не содержат каких-либо возможных примесей галогенидов. Метод можно использовать для выделения твердых алкильных соединений натрия и калия. Если металлы расположены близко друг к другу в ряду активности, равновесие не удается сдвинуть. Например, алкильные соединения висмута невозможно получить из алкильных соединений ртути. [c.462]

    Каталитическая система, состоящая из алкилов и галогенидов металлов, использованная Циглером и Натта для синтеза стереоспецифических виниловых полимеров, представляет лишь одну из каталитических систем, в которых центры, контролирующие реакцию роста цепи, возникают на мелких, иногда коллоидного размера, частицах металлов или металлоорганических соединений. В этой главе рассматриваются другие катализаторы и каталитические системы, которые пригодны для получения стереорегулярных полимеров. [c.242]

    Реакция металлоорганического соединения с галогенидом металла [c.434]


    В отсутствие воды такие реакции невозможны. В этом случае образуются металлоорганические соединения и галогениды металлов или димерные углеводороды  [c.221]

    Алкилгалогениды вступают в реакцию с некоторыми металлами, образуя металлоорганические соединения [313]. Чаще всего в качестве металлического реагента используют магний и реакция служит общим методом получения реактивов Гриньяра [314]. Активность галогенидов уменьшается в ряду 1>Вг> >С1. Реакция применима ко многим алкилгалогенидам, первичным, вторичным и третичным, а также к арилгалогенидам, однако в случае арилхлоридов требуется использование тетрагид- [c.464]

    Заметим, что в данной реакции используют галогенид менее активного (по ряду напряжения) металла, а металлоорганическое соединение более активного металла. Чтобы превратить одно металлоорганическое соединение в другое с более активным металлом, используют реакцию с самим свободным металлом  [c.159]

    Реакция полимеризации этилена и других олефинов в полиолефины под влиянием катализаторов, содержащих алюминий-алкилы или другие металлоорганические соединения, гидриды металлов и галогениды титана, протекает по цепному ионному механизму. Механизм этой реакции относится к анионной полимеризации, которая инициируется металлоорганическими соединениями или гидридами щелочных металлов — донорами электронов. Необходимость наличия в каталитической системе, помимо А1(Б)з, еще ТЮ14 или Ti lз несколько осложняет представление о механизме реакции. Механизм анионной полимеризации в присутствии алкилов металлов, например триэтилалюминия, описывается следующей схемой  [c.76]

    Взаимодействие металлоорганического соединения с галогенидом более электроотрицательного элемента (под более электроотрицательным элементом понимают элемент, расположенный в ряду электрохимических потенциалов за элементом взятого металлоорганического соединения). Эта реакция широко применяется для получения органических соединений многих металлов (главным образом переходных), исходя иа магнийорганических соединений [c.610]

    Алюминийорганические соединения всех степеней алкилирования реагируют с галогенидами непереходных металлов, образуя металлоорганические соединения. Реакции эти могут в будущем, благодаря доступности алюминийорганических соединений, получить большое значение. [c.289]

    Взаимодействие металла с органическим галогенидом представляет собой удобный метод получения производных умеренно активных металлов, например лития, магния и цинка. Диалкиловые эфиры, в частности диэтиловый эфир, служат инертной и слабополярной средой, в которой металлоорганические соединения обычно растворимы. Необходимо принимать специальные меры, чтобы исключить присутствие влаги, кислорода и двуокиси углерода, которые реагируют с металлоорганическими соединениями это обычно достигается проведением реакции в атмосфере инертного газа — азота или гелия. [c.309]

    Как было показано в ряде исследований [102, 118—125], реакция металлоорганических соединений с галогенидами переходных металлов сопровождается восстановлением последних до более низкого валентного состояния  [c.92]

    Взаимодействие с соединениями, содержащими активные атомы галогена. Такие реакции используются, например, для синтеза фосфорорганических соединений (см. раздел 2.2.18.1), а также важны для получения других металлоорганических соединений из соответствующих галогенидов металлов (см. разделы 2.2. Г9.5, 2.2.19.6 и 2.2.19.8). [c.540]

    Механизм реакций галогенирования углеводородов посредством галогенидов металлов интересовал многих химиков, начиная с Густавсона. До 20-х годов в этом направлении не было существенных сдвигов одни химики принимали металлоорганический механизм реакций, предложенный Фриделем и Крафт-сом, другие больше склонялись к позиции Густавсона, указавшего на образование комплексных промежуточных соединений галогенида металла с исходным продуктом. [c.378]

    Некоторые типы металлоорганических соединений легко реагируют с органическими галогенидами, при этом происходит обмен галогена на металл. Часто оказывается удобным использовать такие реакции для [c.310]

    В отличие от предыдущей реакции взаимодействие металлоорганических соединений с галогенидами металлов протекает успешно только в тех случаях, когда М расположен после М в ряду активности металлов [302]. Поэтому обе реакции вместе составляют мощный инструмент для получения любых видов металлоорганических соединений. Для рассматриваемой реакции наиболее распространенными субстратами служат реактивы Гриньяра и литийорганические соединения. Так, при обра- [c.462]

    Как уже было подробно рассмотрено, активными катализаторами Циглера являются продукты реакции соединений металлов IV—VIII групп периодической системы с металлоорганическими соединениями, производными металлов I—III групп. Приготовление катализатора, например, из четыреххлористого титана и триизобутилалюминия проводят, добавляя по каплям галогенид металла к алкилу алюминия. При этом происходит экзотермическая реакция и образуется окрашенный осадок. После добавления углеводородного растворителя часть окрашенного осадка диспергируется с образованием коллоидной суспензии. Для приготовления катализатора можно использовать также растворы галогенида металла и алкила металла. Особенно активные катализаторы Циглера получаются в том случае, если приготовление катализатора вести в присутствии полимеризуемого олефина. В одном из рекомендуелшх для этого способов предусматривается введение индивидуа.иьных компонентов катализатора в зону реакции в виде паров или в хорошо диспергированном состоянии при температурах ниже температуры полимеризации [135]. В одном из вариантов метода компоненты катализатора растворяют порознь и повышают температуру до 60—80°. В таких условиях пар над раствором содержит некоторое количество летучего компонента катализа- [c.167]


    Реакции с галогенидами металлов. В безводных галоидных солях, хотя они и не диссоциированы, на атоме металла существует значительный дефицит электронной плотности, поэтому реактивы Гриньяра взаимодействуют с ними как нуклеофилы, образуя металлоорганические соединения [c.232]

    Первые три главы посвящены в основном современным представлениям о природе металл-углеродной связи и методам образования этой связи (реакции со свободными металлами, взаимодействие с галогенидами металлов, реакции металлоорганических соединений и др.). В последующих главах рассматриваются металлоорганические соединения элементов I—УП групп периодической системы даются сравнительные характеристики органических производных данной группы, методы синтеза и пути использования соединений. Рассматриваются также органические производные переходных металлов, особые типы металлоорганических соединений (перфторалкильные производные, карбонилы и карбиды металлов и др.). Отдельная глава посвящена применению металлоорганических соединений в органическом синтезе неметаллических производных. [c.4]

    Практически такой метод является единственным для получения металлоорганическнх соединений неактивных металлов. В некоторых случаях для этих целей используют реакции металлоорганических соединений с галогенидами металлов  [c.159]

    Известен целый ряд соединений, способных вызывать расщепление связей скелета гетероатомных соединений. Термическое разложение, а также разложение под действием воды и водных растворов кислот рассматривались ранее. Здесь будут ргссмотрены реакции разрыва некоторых гетероатомных связей под действием аминов, металлоорганических соединений и галогенидов металлов. [c.289]

    Одним из возможных индикаторов на атомную диссоциацию органических галогенидов являются реакции (в свободном состоянии или в неионизирующих растворителях) с образованием металлоорганических соединений с такими металлами, как ртуть, мыщьяк, сурьма и теллур. Непосредственная реакция с ртутью наблюдается в случае таких веществ, как й-бром-бензилцианид, N-хлоримиды, а также в случае нёкоторых алкилиодидов, легко разлагающихся фотохимически (сТр. 128-29), например метилиодида. Но в отличие от этого, реакция с более электроположительными металлами, например с магнием, не является общей реакцией сильно полярных галогенидов типа алкилхлоридов. [c.277]

    Реакция Гриньяра. Одной из наиболее важных реакций алкил- и арилгалогенидов является взаимодействие их с магнием с образованием реактива Гриньяра. Методика получения, разработанная Гриньяром в 1900 г., состоит во взаимодействии галогенида с магнием в среде эфира [9]. Эфир координационно связывается с образующимся магнийорганическим соединением возникающий при этом эфират не только удаляет металлоорганическое соединение с поверхности металла, которая при этом корродировала, но и препятствует атаке металлоорганического соединения органическим галогенидом. В отсутствие эфира магнийорганнческое соединение реагирует с исходным галогенидом по типу реакции Вюрца. Электронодонорные свойства (основность) растворителя и органического галогенида определяют, в какой мере происходит такое сочетание. [c.550]

    В отличие от общих методов, описанных в предыдущих разделах, синтезы литийорганических соединений из других металлоорганических соединений не находят столь широкого применения. Однако бывают обстоятельства, при которых включение более обременительных в обычных условиях операций оправдывается конкретными требованиями. Например, реакция металлического лития с диалкилртутью является способом получения литийорганического соединения, совершенно не содержащего галогенида. Трансметаллирование между литийор-ганическим соединением и органическим производным другого металла (или металлоида) известно для многих элементов (см. Основную литературу. А), но чаще всего для этого используют природные триалкилолова и селеноацетали. Некоторые примеры приведены в табл. 3.7. [c.51]

    Соли диарилйодония реагируют с галогенидами некоторых тяжелых металлов, образуя соответствующие металлоорганические соединения. Реакции такого типа протекают в ацетоновом растворе на холоду или при слабом нагревании и катализируются металлическими порошками. Реакция протекает, вероятно, в комплексе, образованном обоими солями. В случае несимметричных йодониевых солей к металлу переходит ариль- [c.427]

    Кетоны обычно не получаются при использовании в качестве металлоорганического соединения реактива Гриньяра [1314], так как первоначально образующийся кетон взаимодействует со второй молекулой RMgX, давая алкоголят третичного спирта (т. 3, реакция 16-33). Кетоны все же были приготовлены таким образом, но при низких температурах, обратном порядке смешения реагентов (т. е. при добавлении реактива Гриньяра к ацилгалогениду, а не наоборот), избытке ацилгалогенида и т. д., но выходы при этом обычно низки, хотя сообщается о высоких выходах продуктов при проведении реакции в ТГФ при —78 °С [1315]. По этой реакции можно синтезировать также и некоторые кетоны, инертные по отношению к реактиву Гриньяра в силу стерических или других причин (см., например, [1316]). Повышения выхода кетона за счет третичного спирта можно добиться при использовании катализаторов, которыми служат галогениды некоторых металлов, в частности галогениды железа (И1) и меди(1) [1317]. Для реакций с участием этих катализаторов предложены как свободнорадикальный, так и ионный механизмы [1318]. Успешно протекают реакции с Rs uLi, Ra d и комплексами родия, так как эти соединения, как правило, не взаимодействуют с кетонами. [c.228]

    В 1953 г. Карл Циглер и сотр. [1, 2] обнаружили, что переходные металлы и металлоорганические соединения, взятые в определенной комбинации, катализируют процесс превращения этилена в линейный полимер высокой молекулярной массы. Это положило начало целому потоку исследований полимеризации а-олефинов при низких давлениях, который не иссяк и сегодня. В 1954 г. Натта [3] распространил эту реакцию на пропилен, применив в качестве катализаторов получения кристаллического полипропилена трихлорид титана и алкилалюминий. Почти одновременно подобные открытия были сделаны Ванденбергом (компания Геркулес ), Бэкстером (компания Дюпон ), Злет-цем (компания Стандарт ойл оф Индиана ) и Хогэном (компания Филлипс петролеум ). В 1963 г. Циглеру и Натта за их работу была присуждена Нобелевская премия по химии. Промышленное значение этого процесса полимеризации подтверждается производством более 1 млн. т полиолефинов в год многочисленные вариации каталитической системы Циглера — Натта отражены в тысячах патентов и статей. Однако основное количество полипропилена производится по-прежнему с использованием в качестве катализатора галогенида титана (обычно Т1С1з) в комбинации с сокатализатором — триалкил-алюминием или диэтилалюминийхлоридом. [c.191]

    Научные исследования относятся к химии металлоорганических соединений. Открыл (1929) реакцию получения ртутьорганических соединений разложением двойных диазониевых солей и галогенидов металлов, распространенную в дальнейшем на синтез органических производных многих тяжелых металлов (диазометод Несмеянова). Совместно с К. А. Кочетковым применил (1935—1948) диазометод для получения органических соединений олова, свинца, сурьмы и других металлов. Сформулировал (1945) закономерности связи между положением металла в периодической системе и способностью его к образованию органических соединений. Доказал ( 940—1945), что продукты присоединения солей тяжелых металлов к непредельным соединениям являются ковалентными металлоорганическими соединениями (квазикомплексными соединениями). В ходе выполнения этих работ совместно с Р. X. Фрейдли- [c.358]

    Так как реакция Вюрца гетерогенн , скорость присоединения натрия зависит от диффузии и от поверхности металла. Эти факторы, очевидно, детально еще не исследовались. Можно предположить, что скорость диффузии играет решающую роль. Но диффузия тормозится вследствие осаждения галогенида натрия на поверхности натрия. Это явление можно устранить, если натрий ввести в реакцию в форме металлоорганического соединения. [c.59]

    Такую реакцию обрыва цепи нельзя согласовать с ион-радикалыгым механизмом, согласно которому мономер присоединяется к концу растущей полимерной цепи, так что конец растущей цепи все время остается свободным радикалом. Одпако она не противоречит, по-видимому, такому радикальному механизму, при котором рост цепи рассматривается как результат внедрения молекулы мономера между атомом металла и связанным радикалом. В рамках ион-радикальной теории обрыв можно рассматривать как диспропорционирование или рекомбинацию растущих радикалов. Такие же реакции могут происходить между радикалами, образующимися при гомолитическом распаде металлоорганических соединений. Согласно механизму, постулирующему, что рост цепи происходит по анионному механизму на алкилированных галогенидах титана [83], реакция обрыва заключается в гомолитическом распаде связи Т1—С с образованием свободных радикалов. [c.196]

    За исключением соединений платины (IV) и золота (III), стабильные органические производные переходных металлов, содержащие а-связи, получены недавно многие из наиболее поразительных успехов достигнуты после 1955 г. Хотя большая часть переходных металлов реагирует, например, с алкильными и арильными гриньяровскими реагентами и литийорганическими соединениями, но при обычных условиях зачастую не удается получить металлоорганических соединений, которые можно было бы выделить в чистом виде. Действительно, реакция между различными галогенидами переходных металлов и арильными гриньяровскими реагентами обычно применялась для получения биарилов. Хорошо известно, что попытка использовать эту реакцию для получения дициклопентадиенила из циклопента- диенилмагнийбромида и хлорида железа (III) привела к одному из двух независимо друг ог друга сделанных открытий ферроцена. [c.490]

    Большинство исследователей в этой новой области гетерогенных и квазигетерогенных реакций полимеризации согласны с тем, что активные центры, которые не только инициируют полимеризацию, но и до некоторой степени управляют реакцией роста цепи, являются по суш еству комплексными соединениями. Одним из компонентов комплекса часто является галогенид тяжелого металла, его окись или другое соответствующее соединение, тогда как другим компонентом служит металлоорганическое соединение, такое, как гидрид, алкил-, арил-, галоидоалкил-, эфироалкилпро-изводное и т. п. Кроме того, каждый полимеризующийся мономер становится временно частью этого комплекса и только затем вводится в растущую цепь. [c.35]

    Некоторые типы металлоорганических соединений легко реагируют с органическими галогенидами, при этом происходит обмен галогена на металл. Часто оказывается удобным использовать такие реакции для получения шталл<юрганических соединений, [c.377]


Смотреть страницы где упоминается термин Металлоорганические соединения реакции с галогенидами металло: [c.170]    [c.13]    [c.401]    [c.463]    [c.10]    [c.8]    [c.248]    [c.256]    [c.394]    [c.112]    [c.21]   
Основы органической химии 1 Издание 2 (1978) -- [ c.378 ]




ПОИСК





Смотрите так же термины и статьи:

Галогениды металлов

Металлоорганические соединения

Металлы соединения



© 2025 chem21.info Реклама на сайте