Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы молекулярные орбитали

    На основе метода молекулярных орбиталей (МО) объяснить особенности строения металлов в кристаллическом состоянии. [c.216]

    На чем основано утверждение теории делокализованных молекулярных орбиталей в применении к металлам, что весь кристалл металла можно рассматривать как одну гигантскую молекулу  [c.641]

    Более совершенную модель металлической связи позволяет создать теория молекулярных орбиталей. Согласно этой модели, весь кристалл металла следует рассматривать как одну гигантскую молекулу. Все атомные орбитали определенного типа взаимодействуют в кристалле, образуя совокупность делокализованных орбиталей, простирающихся по всему кристаллу. Число валентных атомных орбиталей в отдельном кристалле достигает 10 . Чтобы представить себе, как происходит взаимодействие столь большого числа валентных орбиталей, рассмотрим гипотетическую последовательность линейных молекул лития, Ыг, з, в которых основную роль играют валентные 25-орбитали. На рис. 14-24 показано образование молекулярных орбиталей для трех указанных молекул. Отметим, что вследствие делокализации молекулярных орбиталей ни одному из электронов не приходится располагаться на разрыхляющей орбитали. По мере удлинения цепочки атомов в молекуле расстояние между орбитальными энергетическими уровнями все более сокращается. В предельном случае для кристалла, состоящего из 10 атомов, комбинация атомных орбита-лей приводит к возникновению широкой полосы, или, как говорят, зоны, тесно расположенных энергетических уровней. [c.625]


    Химическая связь в координационных комплексах. Электростатическая теория. Теория валентных связей. Гибридные и хр внешнеорбитальные комплексы. Теория кристаллического поля. Энергия расщепления кристаллическим полем. Низкоспиновые комплексы и высокоспиновые комплексы. Сильные и слабые лиганды. Теория молекулярных орбиталей. я-Взаимодействие между лигандами и металлом. Дативное л-взаимо-действие между металлом и лигандами. [c.204]

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]


    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]

    Каждая из указанных гибридных орбиталей может перекрываться с орбиталью лиганда с образованием связывающей и разрыхляющей орбита-лей, имеющих а-симметрию относительно оси связи между металлом и лигандом. Неподеленная пара электронов от каждого лиганда занимает возникающую связывающую молекулярную орбиталь, и в результате образуются шесть ковалентных связей (рис. 20-8). Аналогичные соображения поясняют образование четырех эквивалентных гибридных орбиталей, направленных к вершинам квадрата в плоскости ху, из р - и [c.225]

    Спектрохимический ряд лигандов. Последовательность расположения лигандов в спектрохимическом ряду (стр. 118) в рамках метода молекулярных орбиталей можно объяснить следующим образом. Как известно (см. стр. 88), чем больше степень перекрывания исходных АО, тем больше энергетическое различие между связывающими и разрыхляющими орбиталями и тем больше А. Иначе говоря, А растет с усилением а-связывания металл — лиганд. На величину А, кроме того, существенное влияние оказывает я-связывание между центральным атомом и лигандами. [c.125]

    Наличие одного d ) или трех d ) электронов на молекулярных -орбиталях соответствует ослаблению двух из шести а-связей металл — лиганд. Поэтому четыре из шести лигандов Ь, располо- [c.518]

    Теория кристаллического поля не позволяет объяснить наблюдаемую последовательность силы лигандов, т.е. их способность к расщеплению энергетических уровней. Но если принять во внимание орбитали лигандов, причем не только те, на которых находятся электронные пары, обобществляемые с металлом, но и те, где находятся неподеленные электронные пары, непосредственно не связанные с металлом, удается в гораздо большей мере объяснить последовательность энергий расщепления. Такая расширенная теория молекулярных орбиталей содержит в качестве предельных случаев как теорию кристаллического поля, так и теорию валентных связей и обычно называется теорией поля лигандов. [c.233]

    В образовании связи я-аллильных лигандов с металлом принимают участие молекулярные орбитали, охватывающие три атома углерода. Донорно-акцепторная связь образуется за счет взаимодействия электронов аллильного лиганда с вакантными гибридными 5р-орбиталями металла, в то время как донорно-дативная связь возникает за счет вакантной разрыхляющей молекулярной орбитали аллильной группы и пар электронов, находящихся на уг-орбитали (или комбинации йдг — ру) металла. Перекрывание орбиталей, как правило, невелико и дативная связь в я-аллильных комплексах, хотя и способствует стабилизации, но не определяет ее [61]. В присутствии лигандов типа Р(СбН5)з, галогенов и неко-1 торых других стабильность я-аллильных комплексов возрастает, что объясняется низким энергетическим уровнем разрыхляющих орбиталей этих лигандов, которые принимают участие в образовании дативных связей. Стабильность комплексов я-аллильного типа [c.107]

    Если совокупности и е -орбиталей в октаэдрических комплексах ионов переходных металлов имеют равные заселенности в компонентных орбиталях, то квадрупольное расщепление равно нулю. Низкоспиновые комплексы железа(П) (tfg) не дают квадрупольного расщепления, если только не снимается вырождение, и эти орбитали могут взаимодействовать различным образом с молекулярными орбиталями лиганда. В то же время высокоспиновый комплекс железа(П) не [c.293]

    Свойства металлов и ковалентных каркасных кристаллов можно интерпретировать в рамках представлений о делокализованных молекулярных орбиталях, рассматривая весь исследуемый объем вещества как одну гигантскую молекулу . Основанная на таких представлениях зонная теория позволяет объяснить многие наблюдаемые свойства проводников, полупроводников и диэлектриков (изоляторов). [c.640]

    Правильное решение дает теория молекулярных орбиталей МО координационной связи образуется путем комбинации наличных з-, р-или -орбиталей лиганда и металла, обладающих подходящими энергиями и симметрией, а особые свойства переходных элементов возни- [c.19]


    Как теория делокализованных молекулярных орбиталей при объяснении электронного строения металлов приводит к представлению о зонах энергетических уровней  [c.641]

    Вернемся теперь от теории локализованных молекулярных орбиталей, каковой в сущности является теория валентных связей, к чисто электростатической теории, в рамках которой химическая связь между металлом и лигандами считается ионной. Простая электростатическая теория предсказывает образование октаэдрической координации по той же причине, по которой шесть единичных зарядов, вынужденные двигаться по поверхности сферы, принимают октаэдрическое расположение, продиктованное требованием минимальной энергии. Здесь мы, в сущности, имеем дело с уже известными нам из разд. 11-3 представлениями об отталкивании электронных пар. [c.228]

    Из предыдущего обсуждения должны стать довольно понятными два момента. Изотропные сдвиги имеют важное значение для понимания электронной конфигурации металла в комплексе, по они мало используются для получения информации относительно деталей связывания металл — лиганд. При интерпретации протонных контактных сдвигов не обойтись без использования молекулярных орбиталей комплекса или, при приближенном подходе, орбиталей лиганда. [c.180]

    Подгонка протонных контактных сдвигов должна давать некоторую уверенность в волновых функциях, полученных в расчетах по методу МО. Если это условие выполняется, то исходя из результатов определения контактных сдвигов можно сделать некоторые выводы [20] относительно связывания, например 1) расстояние между молекулярными орбиталями в2д И а1д в комплексах бис-бензолов больше, чем в комплексах бис-циклопентадиена, что говорит о большем обратном связывании в первом случае 2) степень электронной делокализации по МО не обязательно связана с рассчитанными порядками связей, поэтому по величине контактного сдвига нельзя судить о стабильности 3) а-МО цикла играют важную роль в связывании в обоих типах комплексов, 4) 4 -и 4р-орбитали металла характеризуются значительными порядками свя- [c.181]

    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]

    Автор пользуется теорией поля лигандов и методом молекулярных орбиталей для объяснения структуры и стабильности образующихся комплексов. Каталитическую реакцию он моделирует с помощью комплекса, состоящего из центрального атома — активного центра (как правило, атома переходного металла), окруженного реагирующими частицами—лигандами этого комплекса. [c.5]

    Проблема гетерогенно-каталитического акта является проблемой химического взаимодействия между реагирующими молекулами и взаимодействия их с поверхностью твердой фазы. Поэтому вопросы гетерогенного катализа должны решаться на основе квантовой теории химической связи и, в частности, на базе теории молекулярных орбиталей. Одновременно необходимо изучать свойства молекул, находящихся на поверхности твердой фазы. Это требует привлечения современных представлений о строении металлов и полупроводников. [c.660]

    Во многих ароматических соединениях с делокализованными электронами, как и в комплексах переходных металлов с -орбиталями, энергетические уровни располагаются достаточно близко друг к другу, что позволяет этим соединениям поглощать видимый свет. Поэтому соединения двух этих классов часто обладают яркой окраской. При поглощении фотона света один электрон со связывающей л-орбитали (см. рис. 13-26) переводится на низшую разрыхлящую молекулярную л -орбиталь. Такое поглощение световой энергии называется я -> я -переходом. У бензола и нафталина энергетические уровни располагаются слишком далеко друг от друга, чтобы поглощение происходило в видимой области спектра, и поэтому данные соединения бесцветны. Но если к нафталину присоединены две нитрогруппы, то в конечном продукте, 1,3-динитронафталине, расстояние между энергетическими уровнями становится меньше [c.305]

    Для количественного рассмотрения энергетических уровней в теории поля лигандов используют математическую теорию групп и теорию симметрии. Для этого вначале необходимо составить групповые орбитали для набора лигандов. Затем их комбинируют на основе правил теории симметрии с атомными орбиталями металла с образованием связывающих и разрыхляющих молекулярных орбиталей. По окончании этой математической операции заполняют последовательно орбитали электронами, начиная с той, которая характеризуется самой низкой энергией. [c.49]

Рис. 20-14. Описание электронного строения комплексов с октаэдрической координацией в рамках теории делокализованных молекулярных орбиталей. Те же шесть орбиталей металла, которые использовались в теории ва-лентньгх связей у2, с1 2, з, р , р и р.). теперь взаимодействуют с шестью орбиталями лигандов, на которых находятся неподеленные электронные пары, в результате чего образуются шесть связывающих молекулярных орбиталей (одна а три ст и две ст ) и шесть разрыхляющих орбиталей (а , Рис. 20-14. Описание <a href="/info/29878">электронного строения</a> комплексов с <a href="/info/167764">октаэдрической координацией</a> в рамках теории делокализованных <a href="/info/1199">молекулярных орбиталей</a>. Те же шесть <a href="/info/463293">орбиталей металла</a>, которые использовались в теории ва-лентньгх связей у2, с1 2, з, р , р и р.). теперь взаимодействуют с шестью <a href="/info/822613">орбиталями лигандов</a>, на которых находятся <a href="/info/9258">неподеленные электронные пары</a>, в результате чего образуются шесть связывающих <a href="/info/1199">молекулярных орбиталей</a> (одна а три ст и две ст ) и шесть разрыхляющих орбиталей (а ,
    Комплексы, содержащие ионы металлов с конфигурацией обычно тетраэдрические (реже октаэдрические), что обеспечивает размещение всех электронов по сравнительно стабильным молекулярным орбиталям. [c.131]

    Рассмотрим теперь особенности строения металлов в кристаллическом состоянии. Как уже отмечалось, металлы обладают высокой электропрово.тностью, причем переносчиками тока в металлах служат электроны. Это говорит о том, что в металлах имеются свободные электроны, способные перемещаться по кристаллу иод действием дан<е слабых электрических нолей. В то же время неметаллы в кристаллическом состоянии обычно представляют собою изоляторы и, следовательио, не содержат свободных электронов. Причины этих различий можно объяснить на основе метода молекулярных орбиталей (метод МО). [c.531]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    Этот спектр убедительно свидетельствует о делокалпзаиии неспаоенно-го электрона комплекса на лиганде. Объяснить это можно только образованием ковалентных связей металл — лиганд, поскольку только ири смещивании волновых функций иона металла и лиганда можно получить вклады лиганда в молекулярную орбиталь комплекса, которая содержит неспаренный электрон. [c.23]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    Классическим примером системы с двумя металлическими центрами может служить дигидрат димера ацетата меди(И). Структура этой молекулы показана на рис. 11.6, где в качестве оси г взята ось связи металл-металл. Ионы меди(П) имеют i -кoнфигypaцию. Установлено, что при низких температурах данное соединение диамагнитно, а при близких к комнатной парамагнитно. Молекулу этого комплекса можно рассматривать как систему с двумя молекулярными орбиталями, представляющими собой по существу орбитали металла (со значительным вкладом мостиковой ацетатной группы). На рис. [c.151]

    Из проведенного выше обсуждения видно, что метод МО можно непосредственно использовать для интерпретации механизмов делокализации спинов в комплексе и для качественного описания этим же методом лиганда. В последнем случае мы будем интерпретировать спектр, исходя из молекулярных орбиталей лиганда и электронной конфигурации металла для соответствующей симметрии комплекса, и будем пытаться установить, какие молекулярные орбитали лигандов смешиваются с молекулярными орбиталями металла или какие из первых спин-по-ляризованы. [c.179]

    Основное состояние предсказывается при добавлении некоторого числа электронов металла к молекулярным орбиталям, показанным на рис. 12.5. В первичном механизме спиновой делокализации для ванадо-цена и хромоцепа участвуют, как установлено, молекулярные орбитали, [c.181]

Рис. 12.5. Энергии молекулярных орбиталей (по существу /-орбиталей) металлоцена. (К ванадоцену добавлены электроны. Главный компонент металла показан в скобках.) Рис. 12.5. <a href="/info/82277">Энергии молекулярных орбиталей</a> (по существу /-<a href="/info/1196">орбиталей</a>) <a href="/info/177758">металлоцена</a>. (К <a href="/info/77259">ванадоцену</a> добавлены электроны. Главный компонент металла <a href="/info/1903328">показан</a> в скобках.)
    К сожалению, в большинстве парамагнитных комплексов ионов переходных металлов число атомов настолько велико, что расчет методом МО всего комплекса практически невозможен. Кроме того, даже если число атомов приемлемо, встает вопрос, может ли расчет, проведенный по расширенному методу Хюккеля или по методу ЧПДП, дать разумные волновые функции для соединений с такой большой разницей в величинах зарядов, какая существует между ионом металла и лигандом. При рассмотрении таких систем предполагается, что ион металла дает по крайней мере меньшее возмущение к вкладу протона в молекулярную орбиталь, представляющую собой главным образом МО неподеленной пары, и в другие молекулярные орбитали свободного лиганда, участвующие в связывании. Это допущение разумно для большинства комплексов, в которых прочность связи металл — лиганд составляет 10—20 ккал/моль. С учетом этого приближения проводится расчет по методу МО свободного лиганда и анализ электронной плотности с использованием волновых функций нейтрального лиганда (см. гл. 3). Последний позволяет определить, какими должны быть величины Л, если на каждой из орбиталей, которые, как ожидается, смешиваются с орбиталями металла при образовании комплекса, находится по одному электрону. Результаты таких расчетов для различных замещенных пи-ридинов представлены в табл. 12.1. [c.182]

    Предыдушее обсуждение строилось на использовании параметров Р и значения которых в комплексе ниже по сравнению со значениями в свободных ионах. В другом аналогичном подходе [20, 24] используются коэффициенты молекулярных -орбиталей из орбиталей металла и лиганда, например, для симметрии если пренебречь точной формой орбиталей лиганда, можно получить следующие одноэлектронные орбитали  [c.230]

    Наиболее строгое объяснение природы связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Этот метод значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. По теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, для получения ориентировочных оценок. Для комплекса волновая функция молекулярной орбитали фмо представляет собой линейную комбинацию, состоящую из волновых функций орбитали центрального атома металла фм и групповой орбитали лигандов 2сфь (линейная комбинация определенных орбиталей лигандов)  [c.127]

    Защитная эффективность ингибиторов на основе органических соединений определяющим образом зависит от адсорбционной и электрохимической активности молекул, проявляющейся на границе раздела металл - коррозионная среда . В свою очередь, эта активность непосредственно связана с величинами квантЬво-химических и физико-химических параметров молекул, к которым относятся энергии верхних заполненных и нижних свободных молекулярных орбиталей (ВЗМО и НСМО), дипольный момент, максимальные и минимальные заряды на атомах, молекулярная масса и количество атомов в молекуле. В сгтучае соблюдения идентичности условий экспериментов можно в определенном приближении считать, что защитная эффективность ингибитора является функцией от квантово- и физико-химическт параметров его молекул. [c.288]

    Исследованные методом 1свазичастиц характеристики электронной структуры граничных молекулярных орбиталей свидетельствуют о повышенной электронодонорной способности АСМОЛ-1 по сравнению с афсфальтом (табл. 3.7). Это, вероятно, обуславливает повышенную адгезионную способность олигомерных материалов к металлам и органическим материалам. [c.34]

    Циклопентадиенильный анион образует с катионами таких металлов, как железо, кобальт и др., интересные соединения. Одним из таких веществ, обладающих ароматическими свойствами, является ферроцен (бициклопентадиенилжелезо). Он относится к органическим производным переходных элементов. Ферроцен имеет сандвичевую ( бутербродную ) структуру два цнклопентадие-нильных кольца заключают между собой атом двухвалентного железа. Вся эта система связывается единой молекулярной орбиталью обобществленных электронов  [c.336]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

Рис. 22.20. Схематическое изображение взаимодействия орбиталей атомов металла, которое приводит к образованию в его кристаллической решетке делокали-зованных молекулярных орбиталей. Две атомные орбитали на каждом атоме металла в рассматриваемом примере могут соответствовать 5- и р-орбиталям. Главное, на что следует обратить внимание,-это возникновение очень большою числа молекулярных орбиталей с очень близко расположенными энергетическими уровнями. Эти орбитали не полностью заполнены имеющимися в наличии электронами. Рис. 22.20. Схематическое изображение взаимодействия <a href="/info/1196">орбиталей</a> атомов металла, которое приводит к образованию в его <a href="/info/4795">кристаллической решетке</a> делокали-зованных <a href="/info/1199">молекулярных орбиталей</a>. Две <a href="/info/273413">атомные орбитали</a> на каждом атоме металла в рассматриваемом примере могут соответствовать 5- и р-орбиталям. Главное, на что следует обратить внимание,-это возникновение очень большою <a href="/info/3579">числа</a> <a href="/info/1199">молекулярных орбиталей</a> с очень близко расположенными энергетическими уровнями. Эти орбитали не полностью заполнены имеющимися в наличии электронами.

Смотреть страницы где упоминается термин Металлы молекулярные орбитали: [c.234]    [c.175]    [c.177]    [c.178]    [c.183]    [c.232]    [c.128]    [c.30]    [c.594]    [c.361]   
Физическая химия. Т.1 (1980) -- [ c.541 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали в комплексах переходных металлов

Молекулярные орбитали орбитали

Орбитали в металлах

Орбиталь молекулярная

Теория молекулярных орбиталей комплексов переходных металлов



© 2025 chem21.info Реклама на сайте