Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория молекулярных орбиталей комплексов переходных металлов

    Первой квантовомеханической теорией двухэлектронной связи была теория молекулы водорода, предложенная Гайтлером и Лондоном в 1927 г. Эта теория в 30-х годах была развита Полингом и другими исследователями во всеобъемлющую теорию химической связи, названную методом валентных схем. Она охватывала все молекулы от малых до больших, от ароматических углеводородов до комплексов переходных металлов, а также и твердые тела. Фактически для всех систем, обсуждавшихся в предыдущих главах, возможно рассмотрение на основе метода валентных схем, параллельное приведенному анализу по методу молекулярных орбиталей. [c.287]


    С точки зрения теории МО, основной причиной, определяющей низкую стабильность нестабилизированных а-комплексов переходных металлов, является малая разница в энергиях высшей занятой -орбитали металла и разрыхляющей а -молекулярной орбитали, связывающей металл с углеродом. Поэтому при незначительном возбуждении электронов металла они переходят на а -разрыхляю-щую орбиталь и деформируют комплекс. При координации металла и электронодонорного органического лиганда возникают дативные связи, благодаря которым разность энергий d- и а -орбиталей увеличивается, а, следовательно, возрастает прочность комплекса. Такая координация снижает влияние и второй причины дестабилизации — перехода электронов с а-связывающей на вакантную -орбиталь, которая при взаимодействии с электронодонорным лигандом оказывается заполненной. [c.103]

    Для описания связи в комплексах переходных металлов, что существенно для понимания свойств соединений и количественного описания химических процессов катализа, в настоящее время пытаются применить теорию ноля лигандов. Такое название получил метод молекулярных орбиталей (МО) в ирименении к специфическим свойствам комплексов переходных металлов. Обычно применяют полуэмпирический метод МО с использованием линейной комбинации атомных орбиталей (метод МО ЛКАО). Необходимо заметить, что квантовохимические расчеты из-за их приближенности и ряда допущений хороши только в том случае, если они сочетаются с эксиериментальными методами исследования строения молекул и кинетики химических превращений. [c.414]

    Обрисовать теорию молекулярных орбиталей комплексов переходных металлов (стр. 547). [c.508]

    Устойчивые диамагнитные моноядерные органические комплексы переходных металлов почти всегда содержат 18 или менее валентных электронов — это утверждение известно как 18-электронное правило (иногда называемое правилом эффективного атомного номера). Это правило справедливо вследствие причин, которые станут ясны, если рассмотреть типичный октаэдрический комплекс в рамках теории молекулярных орбиталей. В переходном металле имеется 9 валентных орбиталей пять [c.39]

    Теория молекулярных орбиталей комплексов переходных металлов [c.274]

    В эмпирической теории молекулярных орбиталей комплексов переходных металлов в качестве базиса используют (п- - 1) и п1)р-орбитали металла и соответствующие орбитали лигандов. Таким образом, для первого ряда переходных элементов базис составляют Зс -, 45- и 4р-орбитали. Однако неэмпирические расчеты показывают, что 35- и Зр-орбитали расположены по энергии не намного нил<е этой валентной оболочки , и ими нельзя пренебрегать в более точных расчетах. [c.275]


    Описание теории кристаллического поля и иллюстрации приводятся в следующем разделе. Затем рассматривается более полный метод молекулярных орбиталей. После этого электронные свойства комплексов переходных металлов обсуждаются в терминах орбитального расщепления , которое теория кристаллического поля позволяет определить относительно легко. [c.415]

    Мы убедились, что, исходя из теории кристаллического поля, можно объяснить ряд свойств комплексов переходных металлов. С помощью этой теории можно объяснить многие другие факты помимо рассмотренных нами. Однако получены данные, свидетельствующие о том, что химическая связь между ионами переходных металлов и ли-г андами имеет частично ковалентный характер. Для более строгого описания химической связи в комплексах можно использовать теорию молекулярных орбиталей (см. разд. 8.5 и 8.6). Однако применение теории молекулярных орбиталей к координа- [c.399]

    Теория поля лигандов принимает во внимание взаимодействие орбиталей лигандов с орбиталями металла, по крайней мере в неявной форме. Для комплексов переходных металлов можно проводить и расчеты методом молекулярных орбиталей на разных уровнях приближений. Все эти более сложные расчеты предсказывают существование уровней, расщепленных таким же образом, как предсказывает теория кристаллического поля, и заселенных таким же числом электронов, какое могло бы поступить с d-уровня свободного атома металла. Детальное совпадение вычисленных свойств с экспериментальными может быть улучшено проведением более строгих расчетов, но важнейшие [c.315]

    Автор пользуется теорией поля лигандов и методом молекулярных орбиталей для объяснения структуры и стабильности образующихся комплексов. Каталитическую реакцию он моделирует с помощью комплекса, состоящего из центрального атома — активного центра (как правило, атома переходного металла), окруженного реагирующими частицами—лигандами этого комплекса. [c.5]

    В работах Ван-Флека и Малликена метод ЛКАО МО был впервые применен для исследования комплексов переходных металлов и других соединений. При этом теория симметрии использовалась для классификации молекулярных орбиталей. [c.119]

    В течение последних десяти лет наши знания о комплексах переходных металлов заметно выросли. Экспериментальные данные, полученные с помощью спектроскопии в видимой и инфракрасной областях спектра, а также методом электронного парамагнитного резонанса, требовали проверки старых и создания новых теорий. В теоретическом отношении для объяснения экспериментальных данных была развита теория, явившаяся комбинацией теорий кристаллического поля и молекулярных орбиталей. Новая теория, называемая иногда теорией поля лигандов, в настоящее время общепринята и усовершенствована до такой степени, что позволяет проводить с очевидным успехом количественные расчеты разнообразных измеримых величин [1, 2]. [c.7]

    К. Фукуи развил теорию граничных молекулярных орбиталей применительно к катализу осуществил расчеты и анализ поверхностей потенциальных энергий каталитических реакций с участием металлокомплексных систем. Р. Хофман провел стереохимические исследования моно-и биядерных комплексов переходных металлов с различными органическими лигандами. [c.621]

    В координац. соединениях переходных металлов атомные орбитали центр, иона взаимод. с орбиталями лигандов с образованием молекулярных орбиталей комплекса. В зависимости от симметрии комплексов нек-рые атомные орн битали сохраняют свою энергию и остаются вырожденными. Поэтому в основном состоянии могут реализоваться т. наз. высокоспиновые состояния ионов, когда неск. электронов с одинаковыми спинами расположены по одному на вырожденных атомных орбиталях. В. с. координац. соединений получаются в результате перехода электронов молекулярных орбиталей лиганда на вакантные атомные орбитали металла (состояния переноса заряда лиганд-металл-LU T), с атомных орбиталей иона металла на вакантные молекулярные орбитали лигандов (состояния переноса заряда металл-лиганд-ML r), между атомными орбиталями иона металла или между молекулярными орбиталями лигандов. Электронные В. с. координац. соединений также обозначают, основываясь на теории групп симметрии, в соответствии со св-вами симметрии электронной волновой ф-ции. [c.409]

    Согласно теории молекулярных орбиталей образование устойчивого комплекса связано с понижением энергии в процессе формирования связывающих МО сравнительно с энергией свободного центрального атома и лигандов. Заполнение электронами разрыхляющих МО уменьшает устойчивость системы. С ростом заряда ядра атома металла энергия на связывающих МО будет понижаться и устойчивость комплексов переходных металлов увеличиваться в периодической системе слева направо. После заполнения связывающих орбиталей, когда заполняются оставшимися электронами только иесвязывающие орбитали, устойчивость комплексов тоже растет. Но при большом числе п оставшихся электронов (п>3 для высокоспиновых комплексов п /i>6 для низкоспиновых) будут заполняться разрыхляющие орбитали и устойчивость будет падать. Прп максимальном заполнении разрыхляющих орбиталей устойчивость комплексов минимальна. [c.234]


    Двумя основными методами в теории химической связи являются метод валентных связей и метод молекулярных орбиталей . Известно, что, несмотря на внешнюю разницу в подходах, эти методы но суш еству отличаются исходными позициями приближения к более разработанным формам, в которых они становятся идентичными. А именно, в методе валентных связей преувеличивается, а в методе молекулярных орбиталей недооценивается электронная корреляция (снижение вероятности одновременного нахождения двух электронов в одном и том же месте, вызванное межэлектронным отталкиванием). Естественно поэтому, что оба метода в большинстве случаев приводят к согласуюш имся выводам. Однако, несмотря на отсутствие принципиальной разницы, между обоими методами существует большая разница с точки зрения их практического использования. Сравнительная простота молекулярно-орбитальных расчетов привела к их подавляющему чрличественному преобладанию. А это обстоятельство привело в свою очередь к использованию метода молекулярных орбиталей и в качестве языка для обсуждения свойств молекул, не опирающегося на проделанный расчет. Между тем в качестве основы для создания такого языка метод валентных связей обладает несомненным преимуществом. Действительно, концепция резонанса — основанная на методе валентных связей качественная теория химического строения — оперирует, с соблюдением определенных правил , валентными структурами. В выборе валентных структур и в суждении о них можно руководствоваться химической интуицией, поскольку они представляют собой пусть фиктивные, но молекулоподобные многоэлектронные системы. Напротив, в качественных рассуждениях, использующих молеку-лярщде орбитали, интуиция химика, опирающаяся на звание свойств молекул и химических связей, а не орбиталей, бессильна. И все же при обсуждении свойств органических комплексов переходных металлов предпочтение отдается молекулярно-орбитальному языку, а не языку теории резонанса. Объясняется это непомерно большим числом резонансных структур, необходимых для резонансного описания комплексов .  [c.10]

    Концепции Э. т.— общепринятый язык теор. орг. химии. Однако они не примен. для описания структур с нецелочисленными связями , таких, как аром, соед., комплексы переходных металлов, неклассич. ионы, а также для характеристики св-в, зависящих от параметров отд. электронов (напр., УФ спектры). Поэтому они дополняются заимствованными из квантовой химии представлениями (в частности, о молекулярных орбиталях, гибридизации . Э. т. были впервые развиты в работах Г. Льюиса, Р. Робинсона, К. Ингольда, Л, Полинга в 20—30-е гг. 20 в. [c.701]

    Еще одна причина неудовлетворенности простой электростатической моделью состоит в том, что член электронного отталкивания В, который в теории поля лигандов рассматривают как эмпирический параметр, обычно значительно меньше его значения в свободном ионе. Наиболее вероятной причиной этого является делокализация /-электронов по орбиталям лигандов. В количественной форме наиболее естественно учесть делокализацию на основе метода молекулярных орбиталей, причем этот метод имеет то преимущество, что он допускает как эмпирические, так и неэмпирические подходы. Неэмпирические расчеты комплексов переходных металлов в вычислительном отношении более трудоемки, однако не в такой степени, чтобы быть недоступными для современных ЭВМ, и в дальнейшем они, по-видимому, станут наиболее распространепными. [c.275]

    Электростатическая теория, илн, иначе, теория кристаллического поля, была первоначально разработана Бете, Ван Флеком и др. в период 1929—1935 гг. для учета магнитных свойств соединений пере.чодных и редкоземельных металлов, в которых имеются несвязывающне d- или /-электроны. Альтернативный метод молекулярных орбиталей был предложен Ван Флеком тоже в 1935 г. После периода относительного забвения начиная с 1950 г. обе теории начали широко использоваться для объяснения спектроскопических, термодинамических и стереохимиче-ских свойств конечных комплексов переходных металлов и не- [c.387]

    Долгое время П. м. были, основными методами квантовохим. вычислений. С развитием вычислит, техники их постепенно вытесняют более фундаментальные неэмпирине-ские методы расчета. Однако для исследования сложных многоэлектронных молекул значение П. м. пока сохраняется. М. В. Базилевский. ПОЛЯ ЛИГАНДОВ ТЕОРИЯ, вариант молекулярных орбиталей метода, используемый для расчета энергии и электронной структуры высокосимметричных молекул, прежде всего комплексов переходных металлов. Основана на понятиях орбиталей и теоретико-групповом подходе, при к-ром, напр., сначала из nd-, (п -Ь l)s- и (м + 1)р-орбиталей центр, атома и отдельно из а- и я-орбиталей лигандов строят орбитали симметрии комплекса. С помсщью найденных т, о. орбиталей одного и того же типа симметрии определяют мол. орбитали (МО) как линейные комбинации орбиталей симметрий и соответствующие им орбитальные энергии. В Качеств, вариантах П. л. т. расположение уровней орбитальных энергий определяется с учетом того, сильно или слабо перекрываются орбитали центр, атома и орбитали лигандов, а также с учетом характера перекрывания (связывающего или антисвязывающего). Прн модельных количеств, расчетах получают схему расположения по энергии МО разл. типов симметрии, а также устанавливают тенденции в изменении этой схемы при вариации поля лигандов, изменении числа -электронов у центр, атома, учете я-электронов лигандов и г. п. [c.473]

    Оргел [ИЗ] рассмотрел некоторые свойства ионов переходных металлов на основе теории молекулярных орбиталей и теории поля лигандов. Мы ограничимся, главным образом, применением теории поля лигандов для определения энергии удаления двухвалентных ионов из водного раствора. Понижение энергии комплекса, обусловленное влиянием поля лигандов, определяется симметрией и напряженностью поля (т. е. природой лигандов и их расположением), а также числом и состоянием -электронов. Теория предсказывает, что поле лигандов не должно оказывать влияния на свойства комплекса, если -подуровни заняты полностью или если они заполнены ровно наполовину. Эти два случая реализуются соответственно для ионов 2н и Мн +. В нервом приближении понижение энергии за счет поля лигандов пропорционально (V —5), где V — число неспаренных -электронов. Приняв в рассмотрение некоторые осложняющие факторы, в особенности для иона Сн " , Оргел дал оценки понижения энергии для ряда ионов в квакомплексах. Если вычесть эти поправки из наблюдаемых значений энергии удаления ионов из водного раствора, то получаются исправленные значения, которые возрастают с ростом атомного номера. Если, далее, вычесть из суммы двух первых ионизационных потенциалов иона Си + энергию, необходимую для того, чтобы перевести электрон с -орбитали на 5-орбиталь, то максимум на кривой зависимости ионизационных потенциалов от атомного номера также исчезает. В связи с этим полагают, что наблюдаемые отклонения в зависимости энергий удаления ионов из раствора связаны с влиянием ноля лигандов. Соответствующая поправка может достигать 5% от общей теплоты удаления иона из раствора. [c.194]

    За последние два десятилетия, прошедшие с момента открытия ферроцена (1951 г.), химия металлоорганических соединений переходных металлов возникла и развилась в самостоятельную отрасль элементоорганической химии. Были разработаны методы синтеза основных классов металлоорганических соединений и. п-комплексов переходных металлов. Эти исследования охватили практически все переходные металлы (около 30), и для каждого из них была развита своя, индивидуальная химия ме-таллоорганических соединений и я-комплексов. Одновременно шло интенсивное теоретическое изучение природы связи переходный металл — п-лиганд, разрабатывались новые подходы к описанию связи в рамках метода молекулярных орбиталей, теории поля лигандов, модели электронного газа и др. [c.5]

    Теория кристаллического поля не нова. Лэнгмюр в 1919 г. предположил наличие в комплексах ионной связи, а десятилетием позже Бете [24] разработал теорию с квантовомеханическим подходом. К комплексам переходных металлов эта теория впервые была применена Шлаппом и Пенни [25] и Ван-Флеком 26], которые использовали ее для вычисления магнитной восприимчивости. В 1935 г. Ван-Флек [27] обобщил и сравнил метод валентных связей, теорию кристаллического поля и метод молекулярных орбиталей. Однако в последующие годы вплоть до начала пятидесятых годов теорию кристаллического поля использовали только некоторые физики, в основном Ван-Флек с учениками для изучения главным образом тонких деталей магнетохимии и спектров поглощения. Возобновлением интереса к теории кристаллического [c.409]

    Теория кристаллического поля, хотя она и пренебрегает орбиталями и электронами лигандов, и теория молекулярных орбита-лей, по-видимому, более пригодны для стереохимических предсказаний. Если сравнивать теорию кристаллического поля и теорию валентных связей, то первая более надежна для описания и предсказания стереохимии молекул. Кроме того, она прнводит к более глубокому пониманию важнейших факторов, обусловливающих стереохимические свойства комплексов переходных металлов. [c.438]

    ПОЛЯ лигандов. Монография Ватанабе [7] по применению операторных методов в теории поля лигандов является новым учебником, который заполняет пробел между элементарной квантовой механикой и теоретическими работами, выполняемыми в настоящее время для систем переходных металлов, йергенсен написал две монографии, в одной из которых [8] с точки зрения теории поля лигандов обсуждаются данные оптической спектроскопии до 1960 г., тогда как во второй [9] дан обзор общей научной литературы по комплексам переходных металлов до 1964 г. йергенсену принадлежат также три обширные обзорные статьи. Двумя наиболее интересными в рамках данного обзора являются статья по развитию взглядов на нефелоауксетичёские ряды и анализу литературных данных до 1963 г. [10], а также обзорная статья по дальнейшему расширению области применения теории поля лигандов в оптической спектроскопии [11]. Третья обзорная статья более общего характера посвящена вопросу использования спектроскопии для изучения природы химической связи [12]. Применение теории групп в теории поля лигандов проиллюстриро вано Коттоном [13]. Накамото [14] всесторонне рассмотрел теорию и приложения (до 1963 г.) инфракрасной спектроскопии в химии переходных металлов. Драго [15] представил хотя и вводное по характеру, но достаточно подробное обсуждение применения физических методов в химии переходных металлов. Бальхаузен и Грей [16] опубликовали свои лекционные записи по теории молекулярных орбиталей, включающие приложение теории молекулярных орбиталей к соединениям переходных металлов. В частности, оптическая и инфракрасная спектроскопия, а также теория поля лигандов нашли отражение в исчерпывающих авторитетных обзорах, поэтому в настоящей книге они не будут рассматриваться. Мы представим лишь основные идеи, необходимые для сопоставления с данными по электронному парамагнитному резонансу. Обсуждение прежних достижений метода электронного парамагнитного резонанса (ЭПР) нашло отражение в предшествующих обзорах и также не [c.8]

    В обзоре, составленном Джонсом [126], рассмотрено большинство калориметрических работ для неорганических систем, выполненных до 1961 г. Возрождение интереса химиков-неоргаников к теории кристаллического поля, начавшееся после 1952 г., привело к необходимости получения большого числа данных о ДЯс, нужных для проверки теории кристаллического поля и теории молекулярных орбиталей. К сожалению, в те годы таких данных почти не было, и первоначальные попытки скоррелировать экспериментальные данные с теорией в основном базировались [127] на известных к тому времени значениях теплот гидратации, энергии решетки для дигалогенидов и энергии сублимации металлов. Большой интерес вызывала возможность корреляции экспериментальных значений ДЯсДЛя ионов элементов первого переходного ряда с предсказаниями теории кристаллического поля в связи с ожидаемыми эффектами, обусловленными стабилизацией в поле лигандов и энергией спаривания спинов, что должно было сказаться на величине ДЯ . Однако, несмотря на большой теоретический интерес к подобным калориметрическим данным, было проведено, по-видимому, очень мало исследований, посвященных калориметрическим измерениям для других, не высокоспиновых комплексов двухзарядных ионов первого ряда переходных элементов. [c.64]

    Возможно, наиболее важным понятием, связанным с координационными соединениями и контролирующим их, является льюисовская кислотность иона металла. Это понятие будет расомотре-но в гл. 2, а здесь достаточно сказать, что комплексы непереходных металлов (Ма+, К+, Са +, Мд +, Ва +, А1 +) удерживаются вместе с электростатическими силами и их стереохимия определяется почти исключительно размером лиганда и зарядом на ионе металла. Устойчивости комплексных ионов изменяются параллельно с основностью протонов лигандов, и эффективная роль иона металла подобна таковой протона. Стереохимия комплексов переходных металлов более сложна, и в настоящее время не существует удовлетворительной эмпирической или теоретической модели для детального описания всех аспектов их структуры или даже стереохимии. Для многих из этих металлов ионная модель усложняется тем, что их электронные облака не имеют сферической формы (эффекты кристаллического поля), а также, что подразумевается в их названии, очень значительным отступлением от ионного характера, связанным с переходом от ионной к ковалентной связи. Для таких комплексов важна как нейтрализация зарядов, так и кислотность по Льюису, и для описания химической связи в этих комплексах были развиты теория поля лигандов и метод молекулярных орбиталей [2, 5]. [c.19]

    Теория кристаллического поля, с которой Вы познакомились в предыдущей главе, получила ишро-кое распространение для объяснения свойств соединений переходных металлов и, в частности, комплексных соединений. Вместе с тем эта теория, основанная на предположении о чисто ионном характере связи между комплексообразователем и лигандами, оказывается бессильной при интерпретации некоторых свойств комплексов, например, влияния природы лигандов на стабильность комплексных ионов. В последнее время для объяснения относительной стабильности молекул и молекулярных ионов, а также свойств комплексных соединений широко используется теория молекулярных орбиталей (ТМО), которая в отличие от ТКП учитывает и ионный, и ковалентный вклады в образование химической связи. В этой главе Вы более последовательно, чем раньше, ознакомитесь с основными положениями и возникновением использования ТМО в неорганической химии. [c.141]

    Теория кристаллического поля не нова. Лэнгмюр в 1919 г. предположил наличие в комплексах ионной связи, а десятилетием позже Бете разработал теорию с квантовомеханическим подходом. К комплексам переходных металлов эта теория впервые была применена Шлаппом и Пенни и Ван-Флеком , которые использовали ее для вычисления магнитных восприимчивостей. В 1935 г. Ван-Флек 1 обобщил и сравнил метод валентных связей, теорию кристаллического поля и метод молекулярных орбиталей. Однако в последующие двадцать лет теорией кристаллического поля пользовалось ограниченное число физиков, главным образом для изучения тонких деталей магнетохимии и спектров поглощения. Возобновлением интереса к теории кристаллического поля мы, вероятно, обязаны сделанной в 1951 г. работе химиков Илзе и Хартмана , которые применили ее для объяснения слабой полосы поглощения в видимой части спектра иона гексааквотитана (III) Вслед за ними Оргел , вероятно в большей мере, чем любой другой химик, развил теорию кристаллического поля и указал на ее важное значение для изучения комплексов. В последнее десятилетие большой вклад в эту теорию и ее применение в химии комплексных соединений сделали Йоргенсен, Бальхаузен, Бьеррум, Гриффитс, Ньюхольм, Оуен, Лир и многие другие. [c.257]

    Та ким образом, ни теория молекулярных орбиталей, вообще не приспособленная для этой цели, ни концепция резонанса, слишком громоздкая практически для органических комплексов переходных металлов, не могут служитБ особенно удобным язы1сом для качественного описания химического строения этих соединений. [c.10]

    Ха1>актер связи металл—лиганд в хиноновых комплексах переходных металлов в рамках теории молекулярных орбиталей рассмотрен Брауном [3] и подробно обсуждается в работах Шрауцера и сотр. [4—8]. Молекулярные орбитали молекулы хинона располагаются по энергии в следующий ряд  [c.5]


Смотреть страницы где упоминается термин Теория молекулярных орбиталей комплексов переходных металлов: [c.257]    [c.257]    [c.248]    [c.219]    [c.11]    [c.251]    [c.72]   
Смотреть главы в:

Химическая связь -> Теория молекулярных орбиталей комплексов переходных металлов

Химическая связь -> Теория молекулярных орбиталей комплексов переходных металлов




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Комплексы молекулярные

Комплексы переходных металлов

Металло-азо-комплексы

Металлов комплексы

Металлы молекулярные орбитали

Металлы переходные

Молекулярные орбитали в комплексах переходных металлов

Молекулярные орбитали комплексов

Молекулярные орбитали орбитали

Орбитали в металлах

Орбиталь комплексов

Орбиталь молекулярная

Теория молекулярных орбиталей



© 2025 chem21.info Реклама на сайте