Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атом вращение

    Если имеется стерическое препятствие, мешающее свободному вращению, то молярный объем уменьшится по сравнению с молярным объемом нормального соединения. С другой стороны, ответвленный атом углерода в положении 2 может вращаться вместе с углеродным атомом 2 в цепи, и в результате молекула займет больший объем, чем если бы этот атом находился в конце цепи. [c.233]


    Газовая полость, заключенная между крышкой и мембраной, является рабочей полостью компрессора. Для давлений до 4 ат мембрана может быть из прорезиненной ткани. Для более высоких давлений в качестве мембраны используют тонкую стальную пластину, движение которой сообщает масло, поступающее из гидравлического цилиндра в пространство под мембраной. Масло поступает через ряд отверстий малого диаметра в опорной плите. Производительность мембранных компрессоров от 1 до 100 м /ч, причем для давления до 2,5 ат используют одноступенчатые компрессоры, до 250 ат — двухступенчатые и до 2000 ат — трехступенчатые. Скорость вращения вала этих компрессоров в пределах от 250 до 500 об/мин. [c.245]

    Так, газотурбинная установка ГТ-700-4, предназначенная для нагнетания природного газа, состоит из газовой турбины, осевого компрессора, нагнетателя, редуктора с турбодетандером, генератора и камеры сгорания. Очищенный от механических примесей воздух поступает в осевой компрессор, где сжимается до 5 ат и направляется в регенератор для подогрева отходящими газами турбины до более высокой температуры. В камере сгорания происходит сгорание топлива в потоке горячего сжатого воздуха. Продукты сгорания с температурой 700° С поступают в двухступенчатую активно-реактивную турбину, где расширяются, совершая работы, затем проходят регенератор и далее выбрасываются в атмосферу. Турбина через редуктор приводит во вращение вал нагнетателя, сжимающего природный газ. [c.292]

    Для того чтобы рассчитать возможные энергетические состояния молекулы, используется понятие о степенях свободы. Движение одиночного атома в пространстве может быть описано системой трех координат. Таким образом, атом при перемещении обладает тремя степенями свободы. Атомы в молекулах, состоящих из п атомов, должны иметь Зп степеней свободы, которые полностью описывают перемещения п атомов, однако вместо описания индивидуальных перемещений п атомов рассматриваются различные комбинации перемещений. Движению молекулы приписываются три степени свободы, подобно тому, как это имеет место в случае отдельного атома. За три степени свободы принимается вращение молекулы вокруг трех ее основных осей. Относительно остальных [c.369]

    Общее число степеней свободы, которыми обладает л-атом-ная молекула, равно 2>п, из которых три степени свободы (или две в случае линейной молекулы) характеризуют вращение молекулы и три степени свободы определяют поступательное движение молекулы в целом. Таким образом, общее число колебательных степеней свободы для системы, состоящей из п атомов, будет равно 2>п — 6 (для линейной системы — 2п — 5). Для активного комплекса это число на единицу меньше, так как одна из колебательных степеней свободы превращается в координату реакции. Колебание образовавшегося комплекса X — V — 2 вдоль валентных связей ведет к реакции распада. Это колебание заменяется движением комплекса X—V—2 особого рода, ведущим к образованию молекул 2 и X. Оно было описано выше и изображено на рис. V, 1 как путь реакции. Это движение рассматривается как вид поступательного движения активного комплекса. Понятия вращение и колебание в применении к активному комплексу не имеют обычного смысла, так как комплекс существует очень недолго. Эти понятия обозначают, что зависимость потенциальной и кинетической энергии системы атомов от координат и сопряженных с ними импульсов такая же, как и для устойчивых молекул. [c.143]


    При вращении по таким орбитам электрон не излучает энергии и атом находится в стационарном (т е. неизменяющемся во времени) состоянии. Излучение или поглощение энергии атомом происходит только при переходе электрона с одной орбиты на другую. [c.28]

    Для этого алкана данных о АЯ/, 298 в литературе нет. Но для тех случаев, когда такие данные имеются, значения, рассчитанные по описываемому методу, хорошо согласуются с экспериментальными данными за следующим исключением. При разработке этого метода было использовано допущение, что все валентные углы в алканах являются тетраэдрическими и груп-пь , связанные ординарными связями, имеют шахматное расположение Поэтому в нем не нашли отражения энергетические эф фекты, обусловленные пространственными стеснениями внутреннего вращения, возникающими, например, когда четыре или три ответвления находятся при углероДных атомах, расположенных ерез один атом углерода, как в 2,2,4,4-тетраалкил-изомерах или VI, 1. Участок цепи, [c.231]

    Определите энергию вращения молекулы iH 1 на десяти первых враш.ат ельных квантовых уровнях и волновые числа девяти первых линий во вращательном спектре поглощения, если момент инерции [c.27]

    В секции труб, которые погружены в расплавленный гач, при вращении барабана поступает холодная вода (27°С). В результате этого на трубах и в ячеистой решетке отлагается слой гача толщиной 12—50 мм, шириной 25 мм. При выходе этих секций труб из ванны в них начинает поступать теплая вода. По мере вращения барабана температура воды в этих секциях ступенчато повышается с 32 до 60 °С. Потение гача осуществляется под избыточным давлением 0,14—0,35 ат или под вакуумом. Выделяющийся отек отводится в емкость. После этого в трубы подается горячая вода или пар для расплавления оставшегося парафина. [c.174]

    Лопастные мешалки. Рабочим органом лопастных мешалок слу-я ат лопасти различной конфигурации. Лопастные мешалки изображены на рис. 5-5. На вертикальном валу перпендикулярно к нему установлено несколько рядов плоских лопастей. Вал приводится во вращение от электродвигателя через зубчатую или червячную [c.106]

    Гребки мешалки расположены под углом к оси аппарата и могут враш аться в различном направлении. Благодаря этому материал перемещается слева направо либо справа налево. В процессе сушки, а также выгрузки высушенного материала из аппарата направление вращения мешалки периодически изменяют. [c.438]

    Гидроциклон (рис. 4-8) имеет неподвижный корпус, состоящий из нижней конической и верхней цилиндрической частей. Разделяемая суспензия подается насосом (или самотеком за счет напора столба суспензии) под избыточным давлением 0,3—2 ат через боковой патрубок в цилиндрическую часть корпуса. Суспензия поступает в корпус по касательной и потому начинает в нем вращаться. При вращении потока с большой угловой скоростью более крупные твердые частицы под действием центробежных сил инерции отбрасываются к стенкам гидроциклона. Возле стенок они движутся по спиральной траектории вниз и в виде сгущенной суспензии (пески) удаляются через песковую насадку 4. Более мелкие частицы и большая часть жидкости движутся во внутреннем спиральном потоке вокруг центрального (шламового) патрубка 2 и в виде тонкой взвеси (слив) поднимаются по этому патрубку в камеру 3, откуда удаляются через верхний боковой патрубок. При большой скорости вращения потока вдоль оси гидроциклона образуется воздушный столб, давление в котором ниже атмосферного. Это воздушное ядро ограничивает с внутренней стороны поток мелких Частиц в гидроциклоне. [c.99]

    Пластинчатый ротационный компрессор (рис. 7-33) имеет цилиндрический ротор /, который эксцентрично установлен внутри корпуса 2, снабженного водяной рубашкой. В радиальных вырезах ротора свободно скользят пластины 3. При вращении ротора пластины под действием центробежной силы выдвигаются из прорезей и скользят по внутренней поверхности корпуса, образуя замкнутые камеры. Объем камер увеличивается слева от вертикальной оси корпуса и уменьшается справа от нее. Соответственно этому газ засасывается через патрубок 4. затем сжимается и нагнетается через патрубок 5. Абсолютное давление сжатия в одноступенчатых пластинчатых компрессорах — до 5 ат, в двухступенчатых — до 15 аг. [c.228]

    Расчет расстояния от Н-атома в р-положении одного радикала до атома углерода метиленовой группы другого радикала, когда оба радикала составляют молекулу бутана (свободное вращение СНд-групп не предполагается), приводит к значению 2,45 А, тогда как аналогичное расстояние от Н-атома в а-положении составляет только 2,16 А. Однако когда молекула бутана находится в активированном состоянии, следует учитывать значительное изменение деформационных колебаний, что, естественно, изменяет указанные расстояния. В частности, если тетраэдрические углы искажаются лишь на 20°, то атом водорода в р-положении одного радикала подходит к атому углерода метиленовой группы другого радикала на расстояние 1,6 А, тогда как атом водорода в а-положении — на расстояние 1,9 А. Для больших деформационных колебаний сближение Р-атома Н с атомом С метиленовой группы второго радикала может быть еще более значительным. Поэтому целесообразно рассмотреть такую четырехцентровую структуру активированного комплекса, где образуются связи а и Ь, а связь с рвется. Разрыв связей а и с приводит к продуктам (5.3) разрыв связи Ь дает продукт (5.2)  [c.105]


    Приведенные соображения позволяют вычислить вращательную статистическую сумму для активированного комплекса. Однако в связи с большим растяжением образующейся связи следует учесть свободные внутренние вращения в комплексе. Эти вращения появляются при возникновении новой связи взамен одного крутильного и четырех деформационных колебаний (само валентное колебание сйс-с заменяется на движение вдоль координаты реакции). Крутильное колебание переходит в свободное вращение двух фрагментов друг относительно друга вокруг возникшей связи. Статистическая сумма Q B.B.Bp, соответствующая этой степени свободы, определяется (8.14). Атом неона ввиду слабого взаимодействия не участвует в образовании жесткого остова, и внутреннее вращение происходит как бы в отсутствие третьей частицы. Далее предположим четыре вращения фрагментов (радикалов) вокруг собственных осей с дополнительными моментами инерции /< > соответствующие статистические суммы обозначим Q .b.bp Таким образом, полная вращательная сумма может быть представлена в виде [c.131]

    Полимеризация этилена может быть проведена под влиянием -облучения. При дозе облучения 36 мегарентген ст( пень пре-вращения этилена в полимер достигает 12,5% уже при давлении 84 ат. Одновременно с процессом полимеризации под влиянием 7-облучения происходит частичная деструкция образовавшегося полимера с последующим соединением продуктов деструкции в новые макромолекулы преимущественно сетчатой формы. Такой полиэтилен размягчается при более высокой температуре, чем полиэтилен высокого давления, имеет меньшую текучесть в размягченном состоянии и не растворяется даже при нагревании. При более высоких давлениях (100 ат и выше) и обычной температуре, а также при значительно меньших дозах облучения (4,5 мегарентген) можно получить твердый полиэтилен с удовлетворительными механическими свойствами. С пони>кением температуры полимеризации возрастает плотность полиэтилена (до 0,95 г см ) и степень его кристалличности. [c.195]

    Столь различное поведение диа- и парамагнитных веществ обусловлено различным характером их внутренних магнитных полей. Как известно, вращение электронов вокруг оси создает магнитное поле, характеризуемое спиновым магнитным моментом. Если в веществе магнитные поля электронов взаимно замкнуты (скомпенсированы) и их суммарный момент равен нулю, то вещество является диамагнитным. Если же магнитные поля электронов не скомпенсированы и вещество имеет собственный магнитный момент, то оно является парамагнитным. Так, атом водорода, имеющий один электрон, па эамагнитен. Молекула же Нп диамагнитна, так как при образовании химической связи происходит взаимная компенсация спиноЕ электронов. [c.155]

    Имеются автоматы, снабженные специальными головками, по-зволяюшими очищать складские, транспортные и продуктовые цистерны, автоклавы, распылительные башни и другое оборудование при давлении воды 2,5—60 МПа. При применении этих автов атов сосуды емкостью 1 м можно очистить от осадков в течение 5 мин, подавая холодную воду под давлением 20 МПа. Скорость вращения насадок зависит от твердости наслоения. При твердых наслоениях скорость вращения — небольшая, так как необходимо оказывать режущее действие при растворимых наслоениях скорость вращения — высокая, так как необходимо оказывать промывное действие. Используя специальные насадки, можно даже очищать автоклав с мешалками. [c.306]

    В некоторых случаях необходимо рассматривать электроны, образующие связь, как части электро1пюго облака [97, 3. г1 0(1особные двигаться по молекулярным орбитам однако, когда мы имеем дело с размерами молекул предельных углеводородов, следует-считать, что эти электроны образуют связи, длина которых и углы между которыми воспроизводятся весьма точно [35]. Изменения длин связей и углов между связями в ненасыщенных молекулах малы, но псе же заметны. Большие успехи были достигнуты в области вьпгисления длин связех в сложных ароматических молекулах [12а]. При обсуждении объемных физических свойств углеводородных молекул в качестве первого приближения можно использовать старое представление об углеродном атоме как о тетраэдре с фиксированными по направлению и длине связями, причем этот атом может свободно вращаться, если он но связан с другими углеродными атомами, и лишен свободы вращения, если он связан с другими атомами. [c.227]

    Предположим, что поршень 3 двигателя находится в верхнем мертвом положении и при вращении вала 5 двигается вниз. При этом в цилиндре 2 создается разрежение, газораспределительный механизм открывает впускной клапан 6, и цилиндр заполняется воздухом. Этот такт называется всасыванием (рис. 35, а). К моменту достижения поршнем нижнего крайнего положения прекращается всасывание воздуха и газораспределительный механизм закрывает впускной клапан. При движении поршня вверх клапаны впускной 6 и выхлопной 1 закрыты, происходит сжатие воздуха в иплиндре. Этот такт называется тактом сжатия (рис. 35, б). В конце такта сжатия, когда давление воздуха достигает 40 ат, а его температура повышается до 600° С, через форсунку 7 впрыскивается мелкораспыленное топливо. Попадая в среду сильно разогретого воздуха, топливо быстро воспламеняется и сгорает (рис. 35, в). При этом в цилиндре значительно повышается давление и температура. Под действием этого давления поршень опускается вниз и через шатун 4 передает движение коленчатому валу 5. Этот такт называется рабочим ходом. При обратном ходе поршня газораспределительный механизм открывает выхлопной кланан [c.78]

    На рис. 133 дан общий вид вертикального трехступенчатого кислородного компрессора без смазки цилиндров. Его производительность 40 м /мип, конечное давление 76 ат, скорость вращения вала 345 об/мнн, ход поршня 300 мм, диаметры цилиндров 580/300/170 мм, мощность иа валу 400 кВт. Цилиндры 2 изготовлены из специального каучука. Поршни 1 выполнены из бронзы АЖ-9- г, штоки 5 — из нержавеющей стали 3X13, фонари 4, крышки клапанов и корпуса холодильников — из стали Х18НП, трубы газопровода—из меди М3. Клапаны 3 всех ступеней прямоточные, сед- [c.243]

    Вследствие тетраэдрической направленности связей углерод его атомы, входящие в цепь, располагаются не на прямой, а зи зягообразно, причем, благодаря возможности вращения атом( вокруг оси связи, цепь в пространстве может принимать разли ные формы (конформации)  [c.456]

    Отличие горизонтального автоклава от вертикального, кроы1 вращения, состоит еще и в том, что он соединяется с общим коллектором разъемной муфтой. Перед началом вращения муфта разъединяет автоклав и коллектор, по окончании процесса растворения — соединяет их. Для разогрева горизонтального автоклава осторожно открывают паровую задвижку на общем коллекторе и медленно подают в аппарат острый пар, при этом задвижку на линии к теплообменнику держат открытой. Как только автоклав достаточно прогреется, задвижку в сторону теплообменника закрывают и давление в автоклаве доводят до 4,5—5,5 ат. Закрывают паровую задвижку на коллекторе, отсоединяют автоклав от коллектора и включают электродвигатель для вращения автоклава. Скорость вращения посредством редукторной передачи отрегулирована на 9 оборотов в минуту Варка жидкого стекла при постоянном рабочем давлении длится примерно 3,5—4 ч. [c.36]

Рис. 9-1. Функции радиального распределения для электронов на 3 -, Зр-и Зй-орбиталях атома водорода. Эти кривые получены вращением орбита-лей во всех направлениях вокруг ядра, позволяющим усреднить все особенности орбиталей, которые зависят от направления в пространстве. 35-Орби-таль не приходится подвергать такой процедуре усреднения, так как она обладает сферической симметрией для этой орбита.чи радиус максимальной плотности вероятности равен 13 ат.ед., кроме того, имеются еще два небольщих максимума вероятности, расположенные ближе к ядру. Для Зр-орбитали максимальная плотность вероятности приходится на г = = 12 ат.ед., имеются одна сферическая узловая поверхность с радиусом г = 6 ат. ед. и меньщий максимум плотности, расположенный ближе к ядру. Для Зс/-орбитали характерен всего один максимум плотности ве- Рис. 9-1. <a href="/info/7568">Функции радиального распределения</a> для электронов на 3 -, Зр-и Зй-орбиталях <a href="/info/1117693">атома водорода</a>. Эти <a href="/info/50783">кривые получены</a> вращением орбита-лей во всех направлениях вокруг ядра, позволяющим усреднить все особенности орбиталей, <a href="/info/685547">которые зависят</a> от направления в пространстве. 35-Орби-таль не приходится подвергать такой процедуре усреднения, так как она обладает <a href="/info/92937">сферической симметрией</a> для этой орбита.чи <a href="/info/1488307">радиус максимальной</a> <a href="/info/9296">плотности вероятности</a> равен 13 ат.ед., кроме того, имеются еще два небольщих <a href="/info/1369684">максимума вероятности</a>, расположенные ближе к ядру. Для Зр-<a href="/info/429160">орбитали максимальная</a> <a href="/info/9296">плотность вероятности</a> приходится на г = = 12 ат.ед., имеются одна сферическая <a href="/info/622322">узловая поверхность</a> с радиусом г = 6 ат. ед. и меньщий <a href="/info/503226">максимум плотности</a>, расположенный ближе к ядру. Для Зс/-орбитали характерен всего <a href="/info/574714">один максимум</a> плотности ве-
    Для уменьшения потребной мощности I и II ступенями компрессор имеет трубчатый холодильник, где воздух,, поступа-ющий из I ступени во вторую, охлаждается водой. Коленчатый вал служит для осуществления поступательно-возвратного движения поршней. Противовес насажен на кривошип коленчатого вала с целью уравновешивания вращающихся масс кривошипно-шатунного, механизма. Шатуны соединяются с приводом-поршней через крейцкопф. Коленчатый вал компрессора приводится во вращение электромотором мощностью 190 кет с числом оборотов 760 посредством клиноременной передачи. Производительность компрессора —1500 м 1час, давление на напорной линии—8 ат, смазка компрессора—принудительная. На приемной линии компрессора устанавливаются воздушные фильтры. [c.109]

    В автоклав вносят 256 г (2 моль) метилгексилкетона и 24 (около 10% по отношению к метилгексилкетону) никелевого катализатора Ренея. Из водородного баллона впускают в автоклав ) Одород до давления 60 ат и начинают подогревать автоклав при /гостоявном вращении. Поглощение водорода начинается уже при 00—120 °С, однако для полного поглощения требуется более [c.366]

    Из прямогонных вакуумных дистиллятов восточных нефтей СССР можно выработать реактивное топливо одно- или двухступенчатым процессом гидрокрекинга Выход реактивного топлива при рециркуляции непре вращенного остатка достигает 65—70 вес. % [27, 29 В одноступенчатом гидрокрекинге под низким давле нием (50 ат) над алюмокобальтмолибденовым катализа тором удается получить малосернистое дизельноетопли во, удовлетворяющее требованиям ГОСТ 4749—49. В этом процессе, разработанном во ВНИИ НП, в качестве сырья используют прямогонные сернистые и высокосерни-стые вакуумные дистилляты. В дизельном топливе серы содержится не более 0,2 вес, % [34, 35]. Свойства про- [c.252]

    Возможна и такая ситуация, в которой поглощается фото 1 с частотой, более высокой, чем наивысщая частота, соответствукщая разности энергетических уровней атома. В этом случае электрон покинет атом и превратится в свободный электрон, а атом станет ионизированным. Обратный процесс рекомбинации катиона с электроном может привести к испусканию фотона с высокой частотой, Такой вид излучения имеет непрерывный спектр частот. Низкочастотные (инфракрасные) фотоны могут также испускаться или поглощаться колебаниями или вращениями диполь-ных молекул, которые со.здают таким образом полосы испускания или поглощения. [c.192]

    Способность диспергировать частицы образующейся сажи, препятствовать их укрупнению обязательна для эффективной противодымной присадки. В этой связи интересны двухкомпонентные присадки. Первый компонент— металлсодержащее соединение при разложении освобождает атом металла с высокой каталитической активностью. В его присутствии частицы сажи успевают догорать, так как температура их воспламенения и время догорания снижаются. Второй компонент присадки должен содержать вещество с диспергирующими свойствами. Так, совместное действие ЦТМ и бариевой присадки А-2 установлено М. С. Ховах с сотр. [21]. Они также считают, что способность этой присадки повышать скорость сгорания сажи не является достаточным условием ее эффективности. Очень важно, чтобы про-цесс сгорания начинался как можно раньше, особенно в высокообо ротных дизелях, где сгорание должно протекать очень быстро. Двойная присадка (0,05% ЦТМ и 1% А-2) удовлетворяет этому требованию, с увеличением частоты вращения ее эффективность растет (рис. 5). [c.60]

    Давно было замечено, что поляризованный луч света, проходя через слой светлых фракций, отклоняется вправо или влево на некоторую величину. Изуч( ние оптического вращения на различных веществах показало, что существенным условием его является наличие ассиметрического атома углерода. Все синтетические вещества, имеющие в своей молекуле ассиметрический атом углерода, не показывают никакого вращения, потому что при синтезе имеется одинаковая вероятность образования и правой, и левой формы. Подобная рацемическая смесь может быть разделена на оптические изомеры только через солеобразные и другие подобные вещества, образованные, например, заведомо вращающей кислотой или о(шованием. Для этого, очевидно, необходимо перевести исследуемое вещество в состояние, способное реагировать с кислотой или основанием. В приложении к нефтям подобные методы еще недостаточно разработаны, и поэтому обыкновенно измеряется вращение, независимо от того, является ли оно результатом преобладания одного из оптических изомеров или следствием наличия только одного изомера. [c.16]

    Винтовые насосы могут быть использованы для перекачивания высоковязких жидкостей, топлив, нефтепродуктов и т. п. Эти насосы применяют Б области подач до 300 м /ч и давлений до 175 ат при скорости вращения до 3000 об1мин. Винтовые насосы обладают рядом достоинств быстроходностью, компактностью, бесшумностью. Производительность винтовых насосов практически не изменяется при изменении давления. К. п. д. этих насосов достаточно высок и достигает 0,75—0,80. [c.151]

    Двухступенчатые винтовые компрессоры изготовляются на давление до 8 ат скорость вращения роторов этих машин достигает 10 ООО об1мин. При давлениях более 2 ат винтовые машины имеют к. п. д. больший, чем машины других типов. Их достоинствами являются компактность и быстроходность, а также чистота подаваемого газа. К недостаткам винтовых компрессоров следует отнести сложность изготовления винтовых роторов и высокий уровень шума при работе этих машин. [c.172]

    Однородное магнитное поле, в которое внесен атом, изменяет угловую скорость вращения его электронов вокруг ядра. Взаимная ориентащм орбиты электрона, вектора его орбитального [c.20]


Смотреть страницы где упоминается термин Атом вращение: [c.230]    [c.62]    [c.411]    [c.15]    [c.370]    [c.14]    [c.146]    [c.106]    [c.13]    [c.272]    [c.293]    [c.157]    [c.440]    [c.170]    [c.285]    [c.111]    [c.447]   
История стереохимии органических соединений (1966) -- [ c.131 ]




ПОИСК







© 2024 chem21.info Реклама на сайте