Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение коксового газа и его очистка

    Природные растворимые соли встречаются в виде солевых залежей или естественных растворов (рассолы, рапы) озер, морей и подземных источников. Основные составляющие солевых залежей или рапы соляных озер хлорид натрия, сульфат натрия, хлориды и сульфаты калия, магния и кальция, соли брома, бора, карбонаты (природная сода). Советский Союз обладает мощными месторождениями ряда природных солей. В СССР имеется более половины разведанных мировых запасов калийных солей (60%) и огромные ресурсы природного и коксового газа для получения азотнокислых и аммиачных солей (азотных удобрений). В СССР есть большое количество соляных озер, рапа которых служит источником для получения солей натрия, магния, кальция, а также соединений брома, бора и др. Основными методами эксплуатацни твердых солевых отложений являются горные разработки в копях и подземное выщелачивание. Добычу соли в копях ведут открытым или подземным способом в зависимости от глубины залегания пласта. Таким путем добывают каменную соль, сульфат натрия (тенардит), природные соли калия и магния (сильвинит, карналлит) и т. д. Подземное выщелачивание является способом добычи солей (главным образом поваренной соли) в виде рассола. Этот метод удобен, когда поваренная соль должна применяться в растворенном виде — для производства кальцинированной соды, хлора и едкого натра и т. п. Подземное выщелачивание ведут, размывая пласт водой, накачиваемой в него через буровые скважины. Естественные рассолы образуются в результате растворения пластов соли подпочвенными водами. Добыча естественных рассолов производится откачиванием через буровые скважины при помощи глубинных насосов или сжатого воздуха (эрлифт). Естественные растворы поваренной соли, используемые как сырье для содовых и хлорных заводов, донасыщают каменной солью в резервуарах-сатураторах и подвергают очистке. Иногда естественные рассолы [c.140]


    I. ПОЛУЧЕНИЕ КОКСОВОГО ГАЗА И ЕГО ОЧИСТКА [c.92]

    При получении водорода из природного газа имеются три стадии конверсия СН4 и СО, очистка моноэтаноламином, промывка и дозировка жидким азотом при конверсии коксовых газов — шесть стадий. Кроме того, для кокса нужны склады, развитой транспорт, громоздкие газогенераторные установки и т. п. Поэтому выгодна кооперация завода азотных удобрений, использующего коксовый газ, с металлургическим заводом. Также выгодна комбинация илн кооперирование химических предприятий с нефтехимическими заводами и комбинатами, так как при этом упрощается производственная структура, снижаются капиталовложения и эксплуатационные расходы. [c.18]

    Полученный тем или иным способом синтез-газ перед поступлением в контактные аппараты, во избежание отравления катализатора, должен быть тщательно очищен от механических примесей, смолистых веществ и в особенности от сероводорода и органических сернистых соединений. Для удаления механических примесей, смолистых веществ и сероводорода используются способы, применяемые для очистки коксового газа. Очистку синтез-газа от органических сернистых соединений производят специальными методами (каталитическая очистка, адсорбция сернистых соединений активным углем, промывка газа растворителями избирательного действия). [c.148]

    В опытном цехе были осуществлены все стадии процесса получения дихлорэтана из этилена коксового газа очистка газа от сероводорода, подогрев газа, контактирование, отмывка от следов хлора, адсорбция. [c.114]

    Полученный коксовый газ проходит предварительную очистку в химических цехах коксохимического завода. Очищенный от смолы, аммиака, сероводорода и бензольных углеводородов коксовый газ направляют потребителям. [c.51]

    В вышеописанных процессах в результате регенерации абсорбирующего раствора появляется свободный сероводород, который можно окислить с получением элементарной серы. Этот процесс особенно важен в случае очистки коксового газа, когда для осаждения сульфита аммония необходима серная кислота. Эту кислоту обычно привозят с другого предприятия. [c.147]

    Подготовка сырья. Если коксование угля обеспечивает получение малосернистого коксового газа и широкой гаммы углеводородов, извлекаемых при его очистке, то обжиг известняка и производство агломерата и железорудных окатышей требуют затрат топлива от внешних источников. Даже при коксовании угля в случае, если необходимо повысить выход кокса п коксового газа, прибегают к добавке мазута, а также к использованию газового или испаренного жидкого топлива для нагрева коксовых батарей. [c.303]


    Способ получения этилентиомочевины может быть осуществлен в коксохимической промышленности, располагающей роданистым аммонием, образующимся при очистке коксового газа от цианистого водорода. Табл. 1. Список, лит. 9 назв. [c.169]

    Сероводород, полученный очисткой коксового газа абсорбционно-десорбционным методом, перерабатывается либо на серу, либо на серную кислоту. При получении серы Нг8 на первой ступени процесса частично [c.68]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    Этилен находится в больших количествах в коксовых газах и газах очистки нефтеперерабатывающих установок и выделяется оттуда путем низкотемпературной перегонки. Все увеличивающаяся потребность в этом исходном продукте тяжелого органического синтеза может быть, однако, удовлетворена лишь путем высокотемпературного пиролиза этана и других алканов при 800—900 °С. Подходящим методом получения этилена в лаборатории является дегидратация этанола под действием концентрированной серной кислоты. Первоначально при этом образуется этилсульфат, нагревание которого до 170°С дает этилен и серную кислоту. При 140 °С этилсульфат реагирует с избытком спирта с образованием диэтилового эфира, а при температурах ниже 140 образуется диэтилсульфат  [c.235]

    Первоначально для этой цели использовали процесс абсорбции СО медно-аммиачными растворами. Распространен также метод промывки газа жидким азотом. При этом получают более чистый синтез-газ, чем после медно-аммиачной очистки, что является основным преимуществом этого метода. Жидкий азот наиболее целесообразно использовать для отмывки коксового газа или газа, полученного конверсией природного газа с применением кислорода. [c.346]

    На рис. 6.2 представлена технологическая схема очистки прямого (неочищенного) коксового газа и получения обратного (очищенного) газа. Прямой газ из коксовых камер охлаждается в газо-сборниках путем орошения аммиачной водой с 750—850 до 90— 110 С [c.164]

    Очистка от циана При значительном содержании в коксовом газе цианистого водорода, экономически целесообразно получение цианистых продуктов. В этом случае циан следует извлекать из газа до удаления серы. Извлечение циана раствором железного купороса позволяет добиваться 70—80 %-ной степени очистки. [c.175]

    Аммиак является ценным компонентом коксового газа и улавливать его из газа экономически выгодно Он является источником для получения азотного удобрения (сульфата аммония) и основ-Шм реагентом для выделения пиридиновых оснований в сульфатно-пиридиновом отделении цеха улавливания Очистка коксового газа от аммиака необходима и по следующим причинам [c.201]

    Роданид аммония и другие роданиды находят ограниченное применение. Некоторое количество роданида аммония получают при очистке коксового газа. Возможна переработка роданида в тиомочевину 2, употребляемую в различных областях техники. Роданид аммония используется для синтеза роданина производные которого находят применение в неорганическом анализе фотографии, а также в органическом синтезе для получения аминокислот, нитрилов, аминов . [c.460]

    На некоторых коксохимических и на всех газовых заводах коксовый газ очищают также от сероводорода. Сероводород, полученный при очистке газа, перерабатывают в элементарную (газовую) серу или в серную кислоту. [c.93]

    В настоящее время в связи с острой необходимостью защиты воздушного бассейна от цианистого водорода на некоторых заводах внедрен полисульфидный метод очистки коксового газа с получением при этом роданистых солей, потребность В которых к 1975 г. составит 10—11 тыс. т в год, или 6—87о от ресурсов цианистого водорода в пересчете на роданистые соли [1]. [c.82]


    Конверсия метана коксового газа. Получение СО-водородной смеси на базе коксового газа может осуществляться высокотемпературной либо каталитической конверсией содержащегося в нем метана. Коксовый газ, очищенный от нафталина, поступает на очистку от сероводорода (моноэтаноламиновая или мышьяковосодовая), затем освобождается от тяжелых углеводородов в угольных фильтрах и направляется в конверторы, заполненные железохромовым катализатором, где при температуре 400° С сероорганические соединения конвертируются до сероводорода. Последний удаляется из газа на специальных установках. [c.16]

    В распространенных в Западной Европе окислительных методах очистки коксового газа с высоким содержанием сероводорода (8-12 г/м ) и низким содержанием цианистого водорода (1-2 г/м ) попутной продукцией является сера. Этим, очевидно, объясняется использование для утилизации солей преимущественно способа сжигания их в восстановительной атмосфере топочных газов с получением сероводородного газа, который возвращают в цикл очистки с целью выделения дополнительного количества серы. [c.28]

    В табл. 2 приведен тепловой баланс жидкофазного окисления растворов, полученных при окислительной очистке коксового газа, типичного для восточных предприятий. Как видно из табл. 2, тепло реакций окисления солей является основной составляющей прихода. [c.31]

    Теплоноситель образуется в топке 5, куда подается коксовый газ и воздух дутьевым вентилятором 10 Для получения необходимой температуры теплоноситель разбавляется рециркулирующими газами, подаваемыми вентилятором 11 Отработавший теплоноситель поступает на очистку в циклоны 12, а затем на вторую ступень очистки в пыле концентраторы 13 н подается дымососом 14 частично в линию рециркуляции, а частично на третью ступень очистки в мокрых прямоточных пылеуловителях 15 Выделяющаяся угольная пыль из аппаратов 12 и 13 шнеками 16 через герметизирующие затворы 17 подается в общий поток высушенного материала [c.49]

    Назначение цеха улавливания — обеспечить охлаждение коксового газа и выделение из него смолы, нафталина, водяных паров, очистку газа от смоляного тумана, а также улавливание химических продуктов аммиака, пиридиновых оснований, фенолов, бензольных углеводородов Извлечение сероводорода и цианистого водорода с получением на их основе товарных продуктов, как правило, производится в отдельных самостоятельных цехах В отдельных случаях эти цехи могут также входить в состав цехов улавливания [c.188]

    Очистка коксового газа от сероводорода также обусловливается целесообразностью его использования для получения элементарной и коллоидной серы, сер- [c.277]

    Очистка от серы коксового газа, направляемого предприятиям черной металлургии, обеспечивает получение высококачественной стали, создает условия для интенсификации мартеновского процесса Допустимое содержание сероводорода в коксовом газе, используемом для Металлургических целей, нормируется ЧМТУ и не должно [c.277]

    Очистка коксового газа от сероводорода осуществляется в цехе сероочистки, основная задача которого — очистка коксового газа от сероводорода до норм, установленных техническими условиями и получение попутных продуктов — газовой серы или серной кислоты [c.278]

    Как известно, конвертированный и коксовый газ содержит взрывоопасные и токсичные вещества. Растворы моноэтаноламина и метанола, применяемые для очистки газов, токсичны, а жидкий азот при попадании на кол<у вызывает обмораживание. Кроме того, процессы очистки идут при высоких и очень низких температурах. Возможность возникновения пожара или взрыва, отравления или получения ожога может создаваться при нарушениях технологического режима, подсосе воздуха в газ или в результате образования в производственных помещениях взрывоопасных и отравляющих газовоздушных смесей при прорыве газов и жидкостей через неплотности оборудования, коммуникаций и запорной арматуры. Поэтому герметичность оборудования и трубопроводов отделения очистки должны проверяться ежесменно. Запрещается подтягивать крепежные детали фланцевых соединений для ликвидации пропусков газов и жидкостей, если система находится под избыточным давлением. Давление следует повышать и снижать постепенно, по установленному для данного оборудования регламенту. Инертный газ, применяемый для продувок, должен содержать не более 3% (об.) кислорода и совершенно не иметь горючих примесей. Перед продувкой газ должен подвергаться анализу. [c.52]

    Разделение коксового газа. Метод фракционированной конденсации с применением глубокого охлаждения используют для разделения коксового газа, а также для очистки конвертированного газа от оксида углерода после парокислородной конверсии метана. Разделение коксового газа конденсацией его компонентов служит одним из методов получения водорода или азотоводородной смеси. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты служат сырьем для органического синтеза. [c.77]

    Рис 68 Течнологическая схема вакуум карбонатного метода очистки коксового газа от сероводо рода и получения серной кислоти методом мокрого катализа [c.287]

    Абсорбционные процессы широко распространены в химической технологии и являются основной технологической стадией ряда важнейших производств (например, абсорбция SO3 в производстве серной кислоты абсорбция НС1 с получением соляной кислоты абсорбция окислов азота водой в производстве азотной кислоты абсорбция NH , паров Hj, HjS и других компонентов из коксового газа абсорбция паров различных углеводородов из газов переработки нефти и т. п.). Кроме того, абсорбционные процессы являются основными процессами при санитарной очистке выпускаемых в атмосферу отходяи их газов от вредных примесей (например, очистка топочных газов от SOj очистка от фтористых соединений газов, выделяющихся в производстве минеральных удобрений, и т. д.). [c.434]

    Дальнейшую ее очистку проводят в специальных печах, где сера нагревается до кипения (рис. 60). Образующиеся пары серы поступают в выложенную кирпичом камеру. Пока камера холодная, пары серы осаждаются на ее стенках в виде светло-желтого (серного цвета) порошка. При нагревании камеры выше 120 °С пары серы сгущаются в жидкость, которую выпускают из камеры в деревянные формы, где она и застывает в виде палочек. Полученную таким путем серу называют черенковой. Элементарную серу получают также из пирита РеЗа (нагреванием руды в шахтной печи без доступа воздуха при температуре выше 600 °С Ре82 = Ре5 + 5), из сероводорода, содержащегося в коксовых газах, нз газов крекинга нефти. [c.284]

    Первой стадией процесса переработки коксового газа является очистка его от Нг5 и СО2 под давлением 1,2—1,6 МПа. Затем при этом же дайлении н при низких температурах из коксового газа конденсируют и выделяют углеводороды. Наконец, последней стадией получения азотоводородной смсси является очистка газа от остаточного содержания СН и СО путем промывки его жидким азотом при температуре —190°С. В результате получают азотоводородную смесь, очищенную от катализа-торных ядов, которая после сжатия компрессорами до высоких давлений поступает на синтез аммиака. [c.61]

    Большое внимание уделяется разработке методов улавливания аммиака из коксового газа растворами фосфорной кислоты или моноаммонийфосфата с получением фосфатов аммония, в частности, диаммонийфосфата Равновесное содержание СО2 и H2S в растворах моноаммонийфосфата в присутствии фосфорной кислоты невеликоПоэтому предварительная очистка коксового газа от них не требуется. [c.298]

    В качестве примеров можно назвать следующие технологии очистка природного газа, нефтяных и коксовых газов от коррозионноактивного НгЗ регенерируемыми растворами этаноламинов очистка азотоводородной смеси в производстве аммиака медноаммиачным раствором от СО и растворами этаноламинов от СО2 осушка обжиговых газов в производстве серной кислоты контактным способом концентрированной серной кислотой очистка газов синтеза от хлоро- и фтороводорода водой с получением отходных соляной и плавиковой кислот в производстве хладонов. [c.38]

    На отечественных коксохимических предприятиях традиционно очистка коксового газа проводится ваку-ум-карбонатным (круговым) способом с переработкой сероводорода в серную кислоту каталитическим и мышьяково-содовым методома с получением в качестве товарного продукта элементарной серы. [c.481]

    Скруббер Вентури (СВ) является перспективным аппаратом для осуществления процессов теплообмена и очистки от взвешенных частиц коксового газа [ 1] и газов, полученных в производстве формованного кокса и в процессе слоевого коксования термически подготовленной ишхты. Целесообразность применения СВ обусловлена практически неограниченной производительностью в масштабах коксохимического производства и общей тенденцией к использованию аппаратов повышенной единичной мощности [ 2, 3]. [c.5]

    Из мокрых способов очистки получили применение а) поли-сульфидная очистка (полусильфидом натрия) с получением двух-водной соли роданистого натрия высокой степени чистоты для производства химического волокна нитрон, б) полисульфидная очистка с получением роданистого аммония (поглотитель полисульфид аммония) Степень очистки коксового газа от цианистого 272 [c.272]


Смотреть страницы где упоминается термин Получение коксового газа и его очистка: [c.228]    [c.401]    [c.154]    [c.436]    [c.72]    [c.475]    [c.908]    [c.192]    [c.608]    [c.425]    [c.286]   
Смотреть главы в:

Курс технологии связанного азота -> Получение коксового газа и его очистка




ПОИСК





Смотрите так же термины и статьи:

Автоматическое регулирование режима очистки коксового газа от сероводорода и получения серной кислоты

КОКСОВЫЙ очистка

Коксовый газ получение

Очистка коксового газа

Очистка коксового газа от цианистого водорода с получением роданистого аммония III

Очистка коксового газа от цианистого водорода с получением роданистого натрия

Получение газа

Экономические показатели процесса очистки коксового газа от сероводорода с получением серы и серной кислоты



© 2025 chem21.info Реклама на сайте