Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал ач Энергия ионизации

    Энергия ионизации гелия по схеме Не = Не + < составляет 2370 кДж/моль. Вычислить значение первого ионизационного потенциала гелия в вольтах. [c.50]

    При химических реакциях металлов с кислотами с атомами металлов происходят следующие превращения а) разрыв связей между атомами в кристалле б) отрыв электрона от нейтрального атома в) взаимодействие полученного иона металла с водой (т. е. гидратация иона металла). Следовательно, если активность отдельного (изолированного) атома определяют лишь по энергии ионизации или потенциала ионизации, то активность твердого металла в реакции с кислотой — по алгебраической сумме энергий ионизации, разрушения кристаллической решетки и гидратации. Чем меньше эта сумма, тем активнее металл реагирует с кислотой. Например, для лития она меньше, чем для натрия, рубидия, калия, а для кальция меньше, чем для натрия. [c.173]


    ПОТЕНЦИАЛ (ЭНЕРГИЯ) ИОНИЗАЦИИ [c.113]

    В соответствии с законом Кулона (см. гл. 2) потенциал (энергия) ионизации атома определяется выражением [c.99]

    При отрыве электрона от атома получается электростатически положительно заряженный ион энергия отрыва называется энергией ионизации, или ионизационным потенциалом. В большинстве случаев наиболее характерной величиной является ионизационный потенциал внешнего электрона или одного из внешних электронов, когда их в атоме несколько. Из этого следует, что величина ионизационного потенциала непосредственно зависит от того, с какого энергетического уровня отрывается электрон. Необходимо помнить, что ионизация атома любого химического элемента всегда требует затраты энергии. [c.19]

    ИОНИЗАЦИОННЫЙ ПОТЕНЦИАЛ — наименьший потенциал, необходимый для удаления электрона из атомной системы (атома, молекулы, иона, радикала). И. п. связан с энергией ионизации Е, т. е. энергией, необходимой для удаления электрона  [c.111]

    Общие понятия. Химическая идентификация (обнаружение) -это установление вида и состояния фаз, молекул, атомов, ионов и других составных частей вещества на основе сопоставления экспериментальных и соответствующих справочных данных для известных веществ. Идентификация является целью качественного анализа. При идентификации обычно определяется комплекс свойств веществ цвет, фазовое состояние, плотность, вязкость, температуры плавления, кипения и фазового перехода, растворимость, электродный потенциал, энергия ионизации и (или) др. Для облегчения идентификации созданы банки химических и физико-химических данных. При анализе многокомпонентных веществ все более используются универсальные приборы (спектрометры, спектрофотометры, хроматографы, полярографы и др.), снабженные компьютерами, в памяти которых имеется справочная химико-аналитическая информация. На базе этих универсальных установок создается автоматизированная система анализа и обработки информации. [c.500]

    Здесь следует особо отметить, как важно указание в растворе , сделанное выше. Первая энергия ионизации натрия является мерой способности газообразного атома Na терять электрон, образуя газообразный ион. В отличие от этого окислительный потенциал является мерой способности твердого Na терять электрон, образуя гидратированный ион натрия в водном растворе Для большинства химических применений последняя характеристика имеет гораздо более важное значение. В некоторых случаях в результате окисления металла в растворе образуется не гидратированный катион, а оксидный комплекс, например [c.431]


    Каждый из этих металлов имеет способность легко терять электроны и становиться окисленным в растворе. И наоборот, их ионы восстанавливаются с трудом, например ионы калия имеют восстановительный потенциал - 2,92 В. Литий теряет электроны в растворе легче, чем Сз, несмотря на более высокую энергию ионизации Ь], потому что маленький размер иона Ь] позволяет молекулам воды ближе подойти к центру этого иона это обусловливает очень высокую устойчивость гидратированного иона. [c.433]

    Потенциал ионизации и сродство к электрону. Важнейшими характеристиками электронной конфигурации атома являются энергия ионизации или потенциал ионизации (ПИ) и сродство атома к электрону (СЭ). Потенциалом ионизации называют изменение энергии в процессе отрыва электрона от свободного атома при температуре О К  [c.38]

    Подобно тому как-диссоциация молекул различных веществ требует затраты различных количеств энергии, ионизация атомов различных веществ также нуждается в затратах разных количеств энергии. Потенциал иони- [c.227]

    Очевидно, что в однотипных молекулах гипервалент-ная связь будет прочнее, если центральный атом (донор) имеет меньший потенциал ионизации Отсюда ясно, почему, например, для серы известен тетрафторид 8р4 и даже гексафторид 5Рв, тогдя как для кислорода подобные соединения не известны. Энергия ионизации атома кислорода столь велика (13,6 эВ), что даже фтор оказывается неэффективным как ли- [c.270]

    Стандартные потенциалы ряда редокс-систем, расположенные в порядке увеличения потенциала, приведены в табл. В. 14. Потенциалы определены относительно стандартного водородного электрода, потенциал которого принято считать равным нулю. Следовательно, стандартный потенциал системы Ре/Ре + (еР = —0,44 В) равен э.д. с. гальванического элемента, составленного из водородного электрода и полуэлемента Ре/Ре2 в стандартном состоянии. Знак — означает, что железный электрод является отрицательным полюсом рассмотренного элемента. Положение металлов в табл. В.14 соответствует их способности переходить в раствор в виде гидратированных ионов. В стандартном потенциале отражается не только энергия решетки металла и энергия ионизации атома металла, но-также и энтальпия и энтропия гидратации ионов. Гидратацией ионов объясняется, в частности, высокое отрицательное значение стандартного потенциала лития. [c.413]

    Особый интерес представляет сродство к электрону элементов группы 5А. В основном состоянии атомы элементов группы 5А обладают электронной конфигурацией пБ пр пр пр. Другими словами, в соответствии с правилом Гунда все валентные р-ор-битали этих атомов наполовину заполнены электронами, спины которых ориентированы в одинаковом направлении. Присоединение электрона к такой довольно устойчивой конфигурации энергетически невыгодно, и действительно, сродство к электрону азота близко к нулю или даже несколько положительно (см. разд. 6.6, ч. 1). Значения сродства к электрону для других элементов группы 5А отрицательны, но все же присоединение электрона к любому элементу группы 5А приводит к выделению значительно меньшей энергии, чем для элементов группы 6А или 7А. Наличие устойчивой, наполовину заполненной электронной подоболочки ответственно также за относительно высокие значения энергии ионизации элементов группы 5А, особенно в случае азота, который имеет более высокий потенциал ионизации, чем кислород. [c.314]

    В табл. 21.8 указан ряд важнейших свойств атомов элементов группы 6А. Энергия простой связи X—X получена путем оценки данных для соответствующих элементов, кроме кислорода. В последнем случае, поскольку связь О—О в молекуле Oj не является простой (см. разд. 8.6 и 8.7, ч. 1), оценку проводили по значению энергии связи О—О в пероксиде водорода. Восстановите льный потенциал, указанный в последней строке таблицы, относится к восстановлению элемента в его стандарлном состоянии с образованием Н,Х(водн.) в кислом растворе. Для большинства указанных в табл. 21.8 свойств снова наблюдается закономерная зависимость от атомного номера элемента. Атомные и ионные радиусы увеличиваются, соответственно энергия ионизации уменьшается, как и следует ожидать на основе изложенного в разд. 6.5, ч. 1. [c.300]

    Объяснить это несоответствие можно следующим образом. Прн сравнении металлической активности в группах сопоставляются потенциалы ионизации металлов в вакууме тот металл более активен, у которого потенциал ионизации меньше. В группе сверху вниз потенциал ионизации уменьшается. В электрохимическом ряду напряжений металлы расположены в порядке уменьшения активности, т. е. увеличения потенциалов ионизации, но не в вакууме, а в водных растворах. Если в вакууме образование катиона металла заканчивается отрывом электрона от атома металла, на что затрачивается энергия, равная потенциалу ионизации, то в водном растворе образовавшийся катион будет гидратироваться, что сопровождается выделением энергии гидратации. Следовательно, энергия ионизации атома в водном растворе включает в себя сумму двух величин потенциал ионизации и энергию гидратации. Энергия гидратации катиона тем больше, чем больше его заряд и меньше радиус при одинаковом заряде. [c.147]


    Восстановительная способность элементарных веществ. Восстановительные свойства веществ, как известно, обусловлены способностью составляющих их атомов отдавать свои валентные электроны. Мерой прочности связи электронов в атомах является величина энергии ионизации, или ионизационного потенциала,(см. 1.14). Очевидно, что восстановительная способность элементарных веществ связана с величиной энергии ионизации их атомов. Наименьшие значения ионизационного потенциала у атомов металлических элементов, в связи с чем все элементарные металлы проявляют восстановительные свойства, при- [c.45]

    Потенциал ионизации / серебра равен 7,574 В, стандартный окислительно-восстановительный потенциал Ад+/А . = = - -0,799 В. Положительно заряженный ион Ад" " обладает большим сродством к электрону, так как энергия, выделяющаяся при присоединении электрод(а к положительному иону, равна энергии ионизации с обратным знаком. Поэтому положительно заряженный ион А + является сильным окислителем. Ион N05 в данных условиях ни окислительных, ни восстановительных свойств проявлять не может. [c.146]

    Значения стандартного электродного потенциала для бериллия и его аналогов близки к значениям у> для щелочных <еталлов, хотя энергии ионизации атомов элементов подгруппы IIA значительно больше, чем для щелочных металлов, но это различие в энергиях ионизации компенсируется более высокими энергиями гидратации катионов элементов подгруппы ILA. [c.330]

    В табл. 3 приведены значения энергий ионизации некоторых атомов. Из нее следует, что наименьшее значение / 1 имеют щелочные металлы и что для данного элемента при переходе от одного значения I к другому Часто наблюдается резкое изменение потенциала ионизации. Так, для бора отрыв 4-го и 5-го электронов требует примерно десятикратной (по сравнению с 1, 2 и З-м электронами) затраты энергии. Последнее обстоятельство непосредственно свидетельствует о группировке электронов в слои. В табл. 3 указанные скачки отмечены ступенчатыми линиями. [c.52]

    Закономерности в изменении энергий ионизации. Энергия ионизации является очень важной характеристикой атомов. Как мы увидим в дальнейшем, от нее в значительной степени зависят характер и прочность химической связи. От энергии ионизации зависят также восстановительные свойства атомов, поскольку чем меньше ионизационный потенциал, тем легче атом отдает электрон. [c.74]

    Если легче всего отрывается первый электрон, то для каждого следующего электрона энергия ионизации растет, так как свободный заряд иона, притягивающего электроны, при этом увеличивается. В периодах, как правило, ионизационный потенциал увеличивается слева направо, при этом восстановительные свойства элементов (атомов) уменьшаются, а окислительные возрастают. [c.115]

    В литературе по эмиссии электронов можно найти много примеров, когда этот эффект, несомненно, имеет место [46]. Если в результате хемосорбции кислорода работа выхода у вольфрама сильно возрастет, то на его поверхности будут хемосорбироваться в виде ионов не только атомы щелочных и щелочноземельных металлов, но и атомы металлов, обладающих значительно более высокими энергиями ионизации. Подобные явления имеют место также при воздействии кислорода на поверхности железа, меди и никеля, когда ионы этих металлов при своем движении по поверхности приближаются к хемосорбированным ионам кислорода или располагаются поверх них (раздел УИ, 6), вызывая проникновение хемосорбированного кислорода внутрь поверхностных слоев металла при этом происходит обращение поверхностного потенциала. Цезий, адсорбированный поверх кислорода, хемосорбированного на вольфраме, значительно прочнее связывается с. металлом, чем цезий, хсмосорбированный на чистой поверхности вольфрама. В результате oднoвpeмeнf oй хемосорбции обоих веществ работа выхода падает до такой [c.165]

    I — энергия ионизации константа интегрирования /м — ионизационный потенциал металла /С.дс — константа скорости адсорбции Кр — константа равновесия К — константа скорости реакции р — давление [c.4]

    На свойствах р-элементов III группы сказывается -сжатие (Л1 располагается в периодической системе в малом III периоде, а Ga, In и Tl в больших периодах непосредственно после -элементов). Так, от Л1 к Ga атомный радиус несколько уменьшается, а первый ионизационный потенциал возрастает. На свойствах атомов таллия, кроме того, сказывается и /-сжатие. Именно поэтому радиус атома Т1 близок радиусу атома In, а энергия ионизации несколько выше. [c.264]

    Энергия этой реакции должна равняться сумме энергии разрыва связи СНз-С,Нз и энергии ионизации радикала СаИб" Потенциал появления иона при диссоциации этана равен 15,2 в пли [c.77]

    Потенциал появления в этом случае численно равен сумме энергии связи Ос,н,-н и энергии ионизации /с н, радикала С2Н5. Из термохимических данных получено  [c.77]

    Энергию ионизации можно определять, бомбардируя атомы электронами, ускоренными в электрическом поде. Наименьшую разность потенциалов, при которой скорость электрона становится достаточной для ионизации атомов, называют потенциалом ионизации атомов данного элемента. Потенциал ионизации (/), выраженный в вольта.к (IV), чнсленко равен энергии ноннзации ( Г), выраженной в эле тронволь-тах. [c.43]

    Она называется кривой эффективности ионизации. Если энергия электронов заметно ниже энергии ионизации, то никаких ионов не возникает. Если энергия электронов равна энергии ионизации, то появляется пик очень низкой интенсивности, поскольку для ионизации в этом случае необходимо, чтобы при столкновении вся энергия электрона передавалась молекуле, вероятность чего не очень высока. По мере увеличения энергии электронов вероятность передачи ими энергии, достаточной для ионизации молекулы, увеличивается. При этом интенсивность пика растет, пока кривая не достигнет насыщения. Хвост кривой при низких энергиях возникает потому, что энергии электронов в пучке различны. Таким образом, для определения энергии ионизации необходимо проэк-страполировать кривую (пунктирная линия на рис. 16.6). В литературе [21] имеется подробное описание различных способов экстраполяции кривой и возникающих при этом ощибок. Если наблюдаемый пик представляет собой пик молекулярного иона (е + КХ -+ КХ + 2е), то энергию ионизации молекулы можно определить путем экстраполяции кривой эффективности ионизации. Если пик принадлежит фрагменту, то экстраполяция кривой эффективности ионизации дает потенциал возникновения этого фрагмента. Например, если исследуемый пик является пиком фрагмента Е молекулы КХ, то потенциал его возникновения Ац. получается путем экстраполяции кривой эффективности ионизации для этого пика. Потенциал возникновения связан со следующими пара- [c.328]

    Для радиационвой химии принципиальный интерес представляет парциальное сечение ионизации. На основании вычисления последнего для ионизации атома водорода покапано, что при ионизации атома электронным ударом в основном освобождаются не очень быстрые электроны (с энергией порядка потенциа (а ионизации). Этот вывод можно, по-видимому, считать достаточно точно отр 1жающим реальные процессы, в которых участвуют и более сложные атомы и молекулы. [c.185]

    Количественной характеристикой восстановительной снособно-оти атомов является значение энергии ионизации, т. е, энергии, необходимой для отрыва одного электрона от нейтрального атома. Отношение этой величины к заряду электрона есть ионизационный потенциал, т. е. напряжение электрического поля, достаточное для отрыва электрона. Ионизационный потенциал выражают обычно в вольтах (В), а энергию ионизации — в электронвольтах (эВ) или в других единицах энергии. Характерно, что для отрыва второго электрона требуется затрата большего количества энергии, а для отрыва третьего э.пектрона — егде большего. Значения ионизационного потенциала и энергии ионизации атомов различных элементов приведены в табл. 1.2 Прило кения (в конце книги). [c.39]

    Энергию ионизации I можно определить также методом электронного удара по величине потенциала К ускоряющего поля, вызывающего ионизацию 1 = еУ. Для большинства атомов потенциалы ионизации найдены из предела схождения линий в спектрах. Для редкоземельных элементов был применен метод поверхностной ионизации атомов на раскаленном вольфраме, разработанный Н. И. Ионовым с сотрудниками. В последние годы для определения потенциалов ионизации атомов и молекул широко используется метод фотоэлектронной спектроскопии (ФЭС), предложенный Ф. И. Вилесовым, Б. Курбатовым и А. И. Терениным (1961) и развитый Тернером (1962, Великобритания), а также метод рентгеноэлектронной спектроскопии (РЭС). [c.58]

    Помимо связывающих и разрыхляющих МО в молекулах различают и несвязывающие МО. Энергия электронов на такой МО практически не отличается от его энергии на соответствующей АО ( , а). Подразделяя орбитали по связывающим свойствам, не следует забывать, что отрыв электрона с любой орбитали, в том числе разрыхляющей, требует затраты энергии (энергия ионизации, выражаемая обычно через потенциал ионизации молекулы — ПИ) , а поступление свободного электрона на незаполненную внешнюю орбиталь, даже разрыхляющую, может сопровождаться выделением энергии (сродство молекулы к электрону — СЭ). [c.104]

    Потенциал ионизации может служить количественной характеристикой прочности связи электрона с атомом. Однако об этом большей частью судят по той работе (энергии), какую необходимо затратить на отрыв электрона йт атома или от иона. Это — энергия ионизации. Она обычно выражается в электронвольтах на одну частицу, а также в килокалориях или килоджоулях на Л/д (Авогадрово число) частиц (т. е. на 1 г-атом) .  [c.28]

    На рис. 12 приведена кривая энергии ионизации (пунктирная линия) нейтральных атомов при переходе в трехаарядные положительные ионы (суммарный потенциал отрыва трех электронов), из которой видно постепенное возрастание энергии ионизации и уменьшение восстановительной активности. Уменьшение [c.59]


Смотреть страницы где упоминается термин Потенциал ач Энергия ионизации: [c.525]    [c.206]    [c.90]    [c.206]    [c.48]    [c.435]    [c.117]    [c.42]    [c.165]    [c.33]    [c.57]    [c.69]    [c.45]   
Современная общая химия (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал ионизации

Энергия ионизации

Энергия ионизации потенциал ионизации

Энергия потенциала



© 2025 chem21.info Реклама на сайте