Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливинилхлорид строение

    Линейные полимеры можно представить в виде длинных нитей, поперечный размер которых ничтожно мал по сравнению с ее длиной. Например, длина макроцепи полимера, имеющего молекулярную массу 350 ООО, в шесть тысяч раз превышает свой диаметр. Из природных полимеров линейное строение имеют целлюлоза, амилоза (составная часть крахмала), натуральный каучук, а из синтетических — полиэтилен, поливинилхлорид, капрон и многие другие полимеры. [c.377]


    Макромолекулы поливинилхлорида имеют разветвленное строение. Установлено, что одно разветвление приходится на 50—100 мономерных звеньев. Растворы полимеров одинакового среднего молекулярного веса, полученных различными методами, имеют примерно одинаковую удельную вязкость. [c.266]

    Влияние пластификатора на свойства поливинилхлорида. Из-за неуравновешенного строения макромолекула поливинилхлорида полярна. Это обусловливает наличие сильных межмолекулярных связей, прочно скрепляющих между собой макромолекулярные цепи, благодаря чему поливинилхлорид — материал жесткий и негибкий. Длй изготовления гибкого и эластичного материала прибегают к пластифицированию поливинилхлорида, в результате чего получают поливинилхлоридный пластикат, имеющий важное значение в электроизоляционной технике, особенно для изоляции проводов и кабелей. [c.124]

    Высокоэластичные полимеры (эластомеры), имеющие в ненапряженном состоянии также аморфное строение (например, каучуки и резины) и обратимо деформируемые под воздействием относительно небольших нагрузок. При нагревании многие твердые полимеры становятся высокоэластичными (полистирол, поливинилхлорид и др.). [c.383]

    Отдельные звенья полимерной цепи, имеющие аномальное строение, также могут служить центрами инициирования деструкции. Например, при синтезе поливинилхлорида наряду со звеньями, построенными по типу голова к хвосту , изредка возникают аномальные звенья, соединенные по типу голова к голове (например, при рекомбинации двух растущих радикалов), вызывающие инициирование деструкции СНг—СН—СН—СНг . [c.69]

    ТЕРМОСТОЙКОСТЬ полпмеров, их способность сохранять хим. строение при новышении т-ры. Изменение хим. строения полимеров связано е деструкцией и структурированием, происходящими в них одновременно характер превращений определяется соотношением скоростей этих процессов. Количеств, критерий Т.— т-ра, при к-рой начинается интенсивная потеря массы образца или эта потеря достигает определ. доли от его исходной массы, напр, половины (7 о,з). Т. устанавливают методами термогравиметрии и дифференциального термич. анализа. Значения Го,5 для пек-рых полпмеров поливинилхлорид 270 С, полистирол 365 С, полипропилен 380 С, полиэтилен 405 С, политетрафторэтилен 500 С, полиниромеллитимид [c.569]

    Полимеры, различные по химическому составу или внутреннему строению, могут проявлять неодинаковое отношение к воздействию той или другой среды. Каучук набухает в бензине, но вполне стоек к действию серной кислоты. Целлюлоза, как углевод, наоборот, легко обугливается концентрированной серной кислотой, но вполне стойка к действию бензина. Поливинилхлорид стоек по отношению к воде, кислотам и щелочам, но активно взаимодействует со многими органическими растворителями. Полиамидные смолы нестойки к действию кислот и концентрированных щелочей, но устойчивы в большинстве органических растворителей (кроме кетонов). Стойкость полимеров к данной среде во многих случаях можно предварительно оценить, сопоставляя химические свойства полимеров и среды. В табл. 36 приведены данные стойкости некоторых видов высокополимерных материалов в различных средах. [c.232]


    В электротехнике широко используют некоторые полимерные материалы, диэлектрические свойства которых невысокие, но они сочетаются с рядом ценных физических, химических и технологических свойств. Таким материалом является, например, поливинилхлорид. Вследствие несимметричного строения макромолекул и сильной их полярности поливинилхлорид худший диэлектрик, чем полиэтилен и полистирол. Однако такие его ценные свойства, как инертность по отношению к кислотам и щелочам, водостойкость, газонепроницаемость, невоспламеняемость и т. п., способствуют исключительно широкому применению поливинилхлорида для изоляции защитных оболочек кабельных изделий, проводов, для изготовления трубок, листов, лент и т. п. При дополнительном хлорировании поливинилхлорида получают перхлорвиниловый полимер, содержащий 64—65% хлора. Из него производят волокно хлорин, ткани, ленты, лаки, эмали, предохраняющие электроаппаратуру от коррозии. [c.339]

    Весьма важно, что все указанные изменения свойств не-пластифицированного поливинилхлорида или натурального не-вулканизованного каучука, обусловленные повышением или понижением температур, не связаны с изменением химического строения, так как каждый раз после возвращения к первоначальной температуре полностью восстанавливаются соответствующие ей свойства материала, если при повышенных температурах не протекали химические реакции. [c.193]

    При нагревании поливинилхлорида такие звенья должны быстрее подвергаться дегидрохлорированию. В то же время при сравнительном изучении скорости термического распада поливинилхлорида, построенного по типу голова к голове , и поливинилхлорида с расположением звеньев голова к хвосту была найдена интересная зависимость. Поливинилхлорид, содержащий атомы хлора в положении 1,2, при нагревании в начальный период деструктируется быстрее обычного, но при дальнейшем нагревании скорость распада поливинилхлорида, построенного по типу голова к голове , меньше скорости распада полимера, построенного по типу голова к хвосту (рис, 48). Это объясняется тем, что после первого периода быстрого термического дегидрохлорирования полимера с атомами хлора в положении 1,2 в макромолекуле образуются звенья, близкие по строению к хлоропрену [c.299]

    Указанное строение поливинилхлорида подтверждается также тем, что он не вступает в реакцию, характерную для 1,2-галогензамещен-ных, — выделение иода из иодида калия. [c.309]

    В литературе отсутствуют данные о химическом строении хлорированного поливинилхлорида, но, по-видимому, на хлор замещаются более подвижные а-водородные атомы. Полимер обладает очень высокой стойкостью к действию кислот и щелочей, но недостаточной свето-и термостойкостью. При температуре 90—100°С он теряет прочность. Полимер хорошо растворим в ацетоне и других органических растворителях и используется главным образом для производства волокна и эмалей. [c.309]

    Структурные формулы полимеров кратко записывают так указывают строение элементарного звена, которое заключают в скобки, и внизу ставят знак п. Например, структурная формула полиэтилена будет (—СНз—СНг—)п-Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д. [c.353]

    Скорость роста макрорадикалов также зависит от их строения. Например, константа скорости роста макрорадикалов. составляет [в мЗ/ кмоль-с)] в случае полибутадиена—100, полистирола — 170, полиметилметакрилата — 700, поливинил-ацетата— 4000, поливинилхлорида— 12 000. [c.116]

    В монографии подробно излагаются вопросы образования и строения студней полимеров, особенности их свойств по сравнению с другими полимерными системами. На ряде примеров из области синтеза и переработки полимеров показано практическое значение студнеобразного состояния (при формовании искусственных волокон, получении пластифицированного поливинилхлорида, при переработке пищевых продуктов). [c.271]

    Линейные полимеры состоят из линейных макромолекул, в которых структурные фрагменты связаны между собою в линейные цепи, при этом заместители в главной цепи не рассматривают как разветвления. Поэтому как полиэтилен, так и полистирол или поливинилхлорид принадлежат к линейным полимерам. Блоксополимеры, в которых линейные цепи различного по набору фрагментов строения связаны в линейные же цепи макромолекулы, точно также относят к линейным полимерам. [c.712]

    Всевозрастающее значение приобретает химия полимеров. Полимеры— химические соединения с большой молекулярной массой от нескольких тысяч до многих миллионов единиц. Большинство таких макромолекул состоят из повторяющихся группировок, звеньев, например целлюлоза, поливинилхлорид, поликапроамид, а также полимеры живых организмов белки, нуклеиновые кислоты. Если выделить вещества с молекулами из таких отдельных группировок или фрагментов, полностью сохранив их строение, то будут утеряны почти все полезные свойства полимеров. Именно способность макромолекул приобретать в процессе увеличения, рск та полимерной цепи или объемной пространственной структуры особые качества выделила науку о полимерах в самостоятельную ветвь органической химии. Полимеры, пожалуй, наиболее многочисленный класс химических соединений, исчисляемый миллионами. Это и природные высокомолекулярные соединения и синтетические каучуки, химические волокна, лаки, краски, иониты, меи и, конечно, пластмассы. [c.32]


    Состав и количество продуктов радиационной деструкции зависят от химического строения полимеров. Так, при деструкции полиэтилена, полипропилена, полистирола, полибутадиена основным летучим (Еродуктом деструкции является воиород, при деструкции полимерных кислот и сложных эфиров выделяются оксид и диоксид углерода, при радиолизе поливинилхлорида и поливипилиденхлорила — хлорид водорода и хлор. [c.213]

    На свойства поливинилхлорида и способность его пластифицироваться оказывает влияние строение частиц и особенно степень их пористости. Чем выше пористость частиц ПВХ, тем легче он поддается переработке. Переработка ПВХ в значительной степени зависит от гранулометрического состава порошка. Для литьевых методов переработки имеет значение насыпная плотность, что вызывает необходимость выпуска ПВХ большой плотности. [c.63]

    Очевидно, это связано или с действием среды на пластифицирующие добавки, вводимые в поливинилхлорид, которые могут вымываться или разлагаться средой или, наоборот, обусловлено пластифицирующим действием самой среды. С повышением температуры (табл. П1.18) происходит резкое увеличение разрушающего напряжения при растяжении при действии кислот [87]. Очевидно, это объясняется протеканием реакций структурирования вследствие термоокислительной деструкции. Еще более значительно изменяется относительное удлинение при разрыве. Однако разброс данных цри этом настолько велик, ЧТО не позволяет сделать определенных выводов. Возможно, что это связано с различным влиянием пластификаторов на термоокислительную деструкцию поливинилхлорида, а также с разными -природой и строением пластификатора и среды. [c.77]

    При пластификации наблюдалось также изменение энергии активации р-процесса и уменьщение его интенсивности. Наиболее четко этот эффект проявляется в поливинилхлориде, причем изменение таково, что при содержании пластификатора выше 20% р-процесс в системе поливинилхлорид —пластификатор отсутствует. Сопоставление этих изменений с ИК-спектрами показало, что уменьшение интенсивности р-про-цесса в пластифицированном поливинилхлориде обусловлено возрастанием количества более жестких конформаций цепи. Это объясняют изменением надмолекулярного строения поливинилхлорида при пластификации [4, с. 163]. [c.111]

    Строение полимера определяет его свойства. Скелет (основная цепь) большинства полимерных молекул представляет собой цепочку, состоящую из углеродных атомов, но в отдельных случаях может состоять из других элементов, например, из кремния. В полиолефинах атомы в основной цепи связаны углеродными связями, в других полимерах можно найти амидные, эфирные и другие связи. Некоторые из этих связей, такие, как эфирные или амидные, способны сильно взаимодействовать с соседними молекулами, влияя тем самым на свойства полимеров. В некоторых полимерах, например в поливинилхлориде, основная цепь образована углеродными атомами, но вдоль цепи располагаются полярные атомы хлора, что, в частности, позволяет прочно удерживать молекулы пластификатора. Другие полимерные цепи несут громоздкие боковые группы, например в молекулу полистирола входят крупные бензольные ядра. Они препятствуют плотной упаковке и сильно влияют тем самым на физические свойства полимера. [c.57]

    Значительная часть книги посвящена описанию химического строения стабилизаторов, механизма их действия при защите поливинилхлорида от различных энергетических воздействий. Приведены типичные рецептуры жестких и пластифицированных материалов применительно к конкретному способу переработки полимера. [c.455]

    Полиоксипропилен (кристалличность) Поливинилхлорид (строение) Полихлоропрен (разветвленность) Полиэтиленимин (развотвленность) Поли-(К) (8)-4-метилгексен-1 (оптическая активность) [c.314]

    Карбоцепные полимеры часто содержат боковые цепи в виде алкильных радикалов разной длины. Чем больше регулярность строения, тем выше способность полимера к кристаллизации и соответственно выше прочность волокон. К таким полимерам относятся регулярные полипропилен, поливинилхлорид, поливиниловый сп[[рт. С увеличением разветвленности и нарушенпем регулярности увеличиваются эластические свойства полимеров, например, полимерных парафинов (полипропилены, полибутены и т. д.). В качестве боковых групп в углеродной основной цепи могут быть не только углеводородные радикалы, но и многие функциональные группы, придающие полимерам разнообразные свойства. Их вводят с мономером нри синтезе полимеров или с помощью реакций замещения в готовых полимерах. [c.308]

    Потенциальный барьер внутреннего вращения зависит от энер ГИИ внутри- и межмолекулярного взаимодействия и определяется химической природой атомов, входящих в цепь, а также ее строением. Очень небольшие внутримолекулярные взаимодействия и энергии конформационных переходов (4,2—25,1 кДж/моль) позволяют отнести неполярные полиэтилен, полипропилен, полиизобу-тилен к гибкоцепным полимерам, статистический сегмент которых составляет 10—40 элементарных звеньев. Введение в макромолекулы полярных заместителей приводит к увеличению внутри-и межмолекулярного взаимодействия, поэтому поливинилхлорид, н поливиниловый спирт являются жесткоцепными полимерами. [c.21]

    Синтез полиэтилена из поливинилхлорида. При исследовании строения макромолекул поливинилхлорида последний подвергали восстановлению гидридом лития в растворе тетрагидрофурана при 150°. При этом был получен полиэтилен. Превращение поливинилхлорида в полиэтилен связано с полным замещением в нем лтомов хлора атомами водорода  [c.199]

    Реакции деструкции и сшивания протекают одновременно, однако в зависимости от химического строения полимеров одна из них может резко преобладать. Деструкции подвергаются главным образом полимеры а, а-замещенных этиленовых углеводородов (полиметилметакрилат, полиизобутилен, поли-а-метилстирол), целлюлоза, галогенсодержащие полимеры (поливинилхлорид, по-ливинилиденхлорид, политетрафторэтилен). Почти у всех этих полимеров невысокие значения теплоты полимеризации, а при их пиролизе образуется большое количество мономера (см. табл. 15.1). [c.245]

    Полимеры в стеклообразном состоянии обладают прочностью твердых тел если прилолсить значительную силу (при сжатии, растял ении, изгибе), они деформируются незначительно. Это объясняется тем, что в стеклообразном состоянии молекулы связаны наиболее прочно и наименее гибки. В сравнении с низко-молекулярными стеклами полимерные стекла могут несколько изменять свою форму под действием деформирующих усилий. Объясняется это тем, что часть звеньев сохраняет подвил<ность при наличии прочной связи на многих других участках макромолекулы. Низкомолекулярные стекла разрушаются без деформации или претерпевая едва заметную деформацию. В этом легко убедиться, если сравнить свойства органического стекла (поли-метилметакрилата) с обыкновенным (силикатным) стеклом. Чем нил<е температура в области стеклообразного состояния, тем меньшее число звеньев обладает подвилсностью, и при определенной температуре, называемой температурой хрупкости, полимерные стекла разрушаются без деформации, подобно низкомолекулярным стеклам. Более хрупки в равных температурных условиях стеклообразные полимеры, построенные из глобулярных частиц. Глобулярные молекулы теряют подвижность в целом, подобно молекулам низкомолекулярных соединений, и полимеры глобулярного строения раскалываются по линии раздела глобулярных частиц. Весьма валено поэтому в процессе переработки полимеров преобразовать глобулярную структуру в фибриллярную, что удается, например, при переработке поливинилхлорида. [c.17]

    Молекула высокомолекулярного соединения, или макромолекула, построена из сотен и тысяч атомов, связанных между собой силами главных валентностей. Такими макромолекулами являются, например, макромолекула целлюлозы (СеНюОз) , натурального каучука (СзНа) , поливинилхлорида (СаНзС ) , полиэтиленоксида (С2Н40) и т. д. Однако такое определение этого понятия применимо не ко всем высокомолекулярным соединениям, и при рассмотрении высокомолекулярных веществ наиболее сложного строения неизбежно придется вернуться к условности понятия молекула . [c.20]

    При конденсации поливинилхлорида с бензолом происходит алкилирование бензола одновременно в различных положениях. Это создает возможность протекания процессов внутримолекулярной циклизации по-пимерной цепи и приводит к образованию нерастворимого полимера пространственного строения  [c.232]

    Сравнивая значения коэффициента проницаемости ряда полимеров, Ласоски приходит к выводу, что он зависит от симметрии строения макромолекулярной цеии. Полимеры с несимметричным строением, например полипропилен и поливинилхлорид, обнаруживают более высокую ироницаемость, чем полиэтилен, в то время как проницаемость структур с двумя симметричными группами (полиизобутилен, поливинилиденхлорид) заметно понижается. [c.120]

    Например, сходство ультрафиолетовых спектров поливинилхлорида и 2,4-дихлорпентана и резкое различие спектров поливинилхлорида и 2,3-дихлорпентана (рис. 4) указывают на строение макромолекулы голова к хвосту . В инфракрасном спектре (11) этого же полимера (см. рис. 3) обнаруживаются полосы при 693 и 635 см характерные для валентных колебаний С—С1 и очень чувствительные к поворотноизомерной структуре макромолекулы. <>ношение интенсивностей этих полос Оаза/ вэз может служить мерой упорядоченности строения и степени кристалличности полимера. Полосы при 963, 1250 и 1427 см относятся соответственно к скелетным колебаниям С—С, деформационным колебаниям С—Н и деформационным колебаниям СНа- [c.20]

    Первые исследования растворов гибкоцепных полимеров в хороших растворителях показали, что наивероятнейшие тр этих систем близки к таковым для низкомолекулярных жидкостей. Согласно более поздним исследованиям для полимеров различного молекулярного строения Тр = 0,7- Ю Ч- 2,3-10 с и не зависит от степени полимеризации 2. Независимость тр от степенн полимеризации карбоцеппых полимеров свидетельствует о том, что процесс установления дипольной поляризации в растворе полимера локализован в достаточно малом молекулярном объеме, т. е. в качестве кинетической единицы выступает небольшой участок макромолекулы независимо от того, присоединена ли полярная группа жестко к основной цепи полимера (поливинилхлорид) либо она входит в состав гибкой боковой цепи (полиметилметакрилат) или в состав основной цепи (полиокси-этиленгликоль). Доказательством этого служит также отсутствие корреляции между изменением Тр и вязкости т) с концентрацией полимера в растворе ири повышении се от 0,75 до 10 % Тр полпметилметакрилата в толуоле при 293 К увеличивается на 35%, в то время как т] возрастает в 7 раз. Аналогично поглощение ультразвуковых волн малой амплитуды в растворах полимеров мало отличается от поглощения в чистых растворителях, несмотря на существенное различие вязкости [4, с. 165]. [c.112]

    Высокомолекулярные соединения — химические соединения, молекулярная масса которых— от нескольких тысяч до нескольких миллионов. Атомы в них соединены между собой химическими связями. Атомы или атомные группировки в молекуле В. с. располагаются либо в виде длинной цепи (линейные В. с., напр, целлюлоза), либо в виде разветвленной цепи (разветвленные В. с., напр, амило-пектин). В, с., состоящие из большого числа повторяющихся группировок (звеньев) одинакового строения, называют полимерами, напр, поливинилхлорид (—СНг—СНС1—) , каучук натуральный [c.34]

    Эффективность пластификатора определяется как его строением, так и молекулярной и надмолекулярной структурой полимера. Гибкоцепные полимеры (поливинилацетат, например), как правило, пластифицируются по механизму внутрипачечной пластификации, т. е. свойства полимера изменяются пропорционально количеству пластификатора, без экстремумов [5]. Полимеры, обладающие хорошо выраженной вторичной структурой (например, поливинилхлорид), в зависимости от количества введенного пластификатора пластифицируются по межпачечному или внутрипачечному механизму. При введении небольших количеств пластификатора проявляется межпачечйый экстремальный, а при введении больших количеств внутрипачечный механизмы [6]. [c.242]


Смотреть страницы где упоминается термин Поливинилхлорид строение: [c.19]    [c.233]    [c.254]    [c.452]    [c.233]    [c.249]    [c.350]    [c.160]    [c.204]    [c.254]    [c.452]    [c.91]   
Получение и свойства поливинилхлорида (1968) -- [ c.180 ]

Химия искусственных смол (1951) -- [ c.284 ]

Химия мономеров Том 1 (1960) -- [ c.263 ]

Волокна из синтетических полимеров (1957) -- [ c.209 , c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид



© 2025 chem21.info Реклама на сайте