Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты алифатические высшие соединениям

    Общий вид масс-спектра дает некоторые сведения о природе неизвестного вещества. Если интенсивные пики группируются в области малых массовых чисел, а пики тяжелых ионов невелики, то соединение, скорее всего, является алифатическим с функциональными группами, не содержащими других углеводородных радикалов (спирты, карбоновые кислоты, первичные амины, диолы и др.). Присутствие в спектре наряду с пиками глубоких осколочных ионов отдельных интенсивных пиков в средней и близкой к слабому пику М+-областях спектра может указывать на наличие циклов, гетероатомов или функциональных групп, связанных с несколькими углеводородными радикалами (нафтены, вторичные и третичные амины, ацетали, кетали, эфиры карбоновых и дикарбоновых кислот и т. д.). Высокая интенсивность пиков молекулярных ионов и отсутствие заметных пиков в области малых массовых чисел характерны для ароматических и полициклических соеди нений. [c.180]


    Башкиров с сотрудниками [55, 56] разработал хорошо управляемый процесс мягкого окисления высокомолекулярных парафинов, позволяющий получать в качестве основного продукта реакции предельные алифатические спирты, в которых преобладают кислородные соединения с тем же числом атомов углерода, что и у исходных парафинов. Процесс осуществлен в заводском масштабе. Особенность метода окисления парафина состоит в том, что, регулируя температуру, скорость подачи газа-окислителя, и концентрацию в нем кислорода, а также продолжительность окисления, удается осуществить процесс жидкофазного окисления высокомолекулярных парафинов с высокой степенью избирательности. Процесс ведется при температуре 165—170° С, продолжительности 4 ч и скорости подачи газа-окислителя (азотокислородная смесь, содержащая 3 % кислорода) 500—1000 л на 1 кг парафина в 1 ч. В этих условиях выход [c.58]

    Для гомолиза алифатических спиртов обычно применяют соединения марганца, кобальта, церия и ванадия, которые обладают более высокими окислительными потенциалами [c.34]

    Старый метод Степанова для определения галогенов в органических веществах основан на взаимодействии раствора органического вещества в этиловом спирте с металлическим натрием, в результате чего образуется галогенид натрия. Этот метод был с успехом использован для микроопределения галогенов. Исследуемое вещество разлагают при кипячении с абсолютным спиртом и металлическим натрием в колбе, соединенной с обратным холодильником, и определяют галогенид натрия в виде галогенида серебра весовым способом или объемным методом Фольгарда. Этот способ пригоден только для твердых и жидких веществ с малым давлением пара при анализе летучих веществ получаются неудовлетворительные результаты. Для микроопределения рекомендуется применять вместо этилового спирта более высоко кипящий моноэтаноламин в смеси с диоксаном и разлагать исследуемое вещество в колбе, соединенной с обратным холодильником, или в тугоплавкой трубке, помещенной в баню с кипящим ди-этаноламином (т. кип. 268 С) далее галогенид натрия определяют весовым способом Галогенопроизводные алифатических углеводородов (например, хлороформ, четыреххлористый углерод, тетрахлорэтан, гексахлорэтан и др.) количественно разлагаются при нагревании в трубке с моноэтаноламином даже без добавки натрия. [c.143]


    Продувочные и сбросные газы циклических процессов нефтепереработки и нефтехим ичеокого синтеза (гидроочистки, гидрирования углеводородов, каталитического и гидрокрекинга, синтеза высших спиртов и т. д.) содержат кроме водорода [концентрация которого достигает 60—75% (об.)] азот, аргон, оксид и диоксид углерода, алифатические углеводороды С]—Се, ароматические соединения Се— g, соединения серы и т. д. Расход этих газов, находящихся обычно под высоким (3,5—10,5 МПа) давлением, на современных нефтехимических установках может достигать 20 000 м /ч. [c.279]

    В такие реакции замещения легко вступают как алифатические, так и ароматические металлоорганические соединения, которые часто даюгт высокие выходы. Однако этот метод следует использовать только в тех случаях, когда металлоорганическое соединение олее доступно, чем другие промежуточные соединения. Так, например, вряд ли кто-нибудь станет получать галогенпроизводное из реактива Гриньяра ведь реактив Гриньяра обычно получают из галогенпроизводного, а спирты — наиболее легко доступные исходные соединения. Тем не менее эта реакция является вполне удовлетворительной и ее можно использовать для обмена галогена или для идентификации соединений. Ниже приведены некоторые находящие применение реакции замещения  [c.442]

    Открытие катализаторов на основе оксидов цинка и хрома явилось значительным шагом в разработке избирательного синтеза метанола из оксида углерода и водорода. Высокие выходы метанола удалось впервые получить в присутствии этих катализаторов при сравнительно высоких давлениях. Вскоре выяснилось, что модифицирование этих катализаторов добавкой солей или оксидов щелочных металлов приводит к образованию жидких продуктов, состоящих главным образом из алифатических спиртов. С этого момента дальнейшее развитие промышленного синтеза кислородсодержащих соединений из СО и Н2 в основно.м пошло по двум направлениям синтез высших [c.122]

    Помимо общих положений о влиянии природы адсорбтива на адсорбцию имеется и ряд частных правил. Так, с увеличением молекулярного веса способность вещества адсорбироваться возрастает. Именно поэтому алкалоиды, а также красители, обладающие обычно высокими молекулярными весами, хорошо адсорбируются. Замечено также, что ароматические соединения вообще адсорбируются лучше, чем алифатические, а непредельные соединения лучше, чем насыщенные. Наконец, так же как и при адсорбции на границе раствор — воздух, при адсорбции жирных кислот и спиртов на твердых веществах качественно соблюдается известное правило Траубе. [c.141]

    Аминолиз проводится в органических или водных средах, а также в смешанных растворителях (при контролируемом pH) [62]. Аминолиз ангидрида можно проводить с высокой селективностью с преимущественным образованием а-изомера. С этой целью необходимо вести процесс при низкой температуре в избытке аминокислоты и в присутствии следующих добавок [53] 1) уксусная кислота [53], ортофосфорная кислота, угольная кислота [53—55] 2 смеси слабых кислот и низших алифатических спиртов [53] 3) смеси сильных кислот и спиртов [61—65]. На практике аминолиз ангидрида аспарагиновой кислоты проводят в водных растворах неорганических соединений [66]. [c.93]

    Практическая значимость результатов. Полученные результаты позволяют рекомендовать МТБЭ и его композиции с алифатическими спиртами в качестве промышленного экстрагента ДФ. По сравнению с другими алифатическими эфирами, МТБЭ обладает более высокой экстракционной способностью и совершенно не образует перекисных соединений. Последнее существенным образом снижает взрывоопасность его использования. [c.5]

    Высокую скорость сольволиза соединений 11.7 и 11.8 можно объяснить протеканием внутримолекулярного общего кислотного катализа под действием 5-гидроксигрупп, который способствует более эффективному общему основному катализу под действием внешнего триэтиламина (и других оснований типа пиридина и М-метилимидазола) (см. структуру 11.9). Внешний катализатор работает по механизму общего основного, а не нуклеофильного катализа, поскольку, во-первых, эфиры алифатических спиртов невосприимчивы к нуклеофильному катализу и, во-вторых, активность Ы-метилимидазола значительно ниже, чем триэтиламина (первый является более предпочтительным нуклеофильным катализатором а второй — общеосновным). Четырехкратное ускорение сольволиза соединения [c.291]

    При растворении органического соединения с активными атомами водорода в алифатическом спирте между этими соединениями происходит обмен активными атомами водорода, причем в соответствующей реакции почти мгновенно устанавливается равновесие [7, 8]. Аналогичным образом добавление к алифатическому спирту тритиевой воды приводит к равновесному распределению этого изотопа между водой и гидроксильными группами спирта. Следует отметить, однако, что подобного обмена с участием атомов водорода, связанных с атомами углерода в метаноле, этаноле и гр т-бутаноле, не наблюдалось [9]. После удаления воды подходящим поглотителем или если с самого начала использовать воду лишь в следовых количествах и с высокой удельной радиоактивностью, остается меченый спирт (радиореагент). [c.247]


    Хотя выход перекисных соединений при окислении вторичных алифатических спиртов довольтю высок и достигает для некоторых из них почти теоретического, однако он несколько снижается по ряду изучаемых спиртов от Сз к Св (рис. 5), что, как и сниженне максимально достигаемой концентрации, может быть объяснено побочными реакциями мел ду перекисями Т1 органическими компонентами реакционного раствора, возникаюшимк в условиях недостатка кислорода. [c.42]

    В отличие от рассмотренных выще представителей пластиножаберных глубоководные акулы и многие другие морские организмы, по-видимому, регулируют плотность тела с помощью ВОСКОВ. Восками называют природные эфиры жирных кислот и спиртов, отличных от глицерина. У многих морских животных эти спирты сами являются производными жирных кислот, так что воск по существу представляет собой комплекс алифатических компонентов, соединенных эфирной связью (рис. 109). У некоторых видов эти вещества имеются в очень больщих количествах. Например, как показали Невенцель и его сотрудники, у обитающих на средних глубинах светящихся рыб Му-с1оркит около 90% липидов составляют воска с цепями из 30—38 атомов углерода столь же высокие концентрации встречаются у мезопелагических ракообразных. У мелководных ракообразных воска содержатся в виде капелек вокруг кишки, а у глубоководных форм они образуют внутриклеточные включения в больщинстве тканей тела. У рыб, живущих на средней глубине, воска находятся главным образом между мышечными волокнами, а также в выстилке плавательного пузыря, где концентрация их необычайно высока иногда в этих плавательных пузырях пространство, предназначенное для газа, всецело [c.351]

    Следовало бы ожидать, что такие соединения, как вода и спирты, в состав которых входят гидроксильные группы, вызывают набухание целлюлозы, так как водородные мостики без труда образуются между атомами кислорода. Дэвис высказывает предположение, что эти соединения не вызывают набухания вследствие наличия пространственного эффекта, какой предполагается у выспшх аминов. Известно, что вода и алифатические спирты характеризуются высокой степенью ассоциации, и вполне может быть, что эти агрегаты молекул слишком велики, чтобы проникнуть в кристаллическую решетку целлюлозы. Моноэтаноламин, молекула которого примерно такая же, как и молекула пропиламина, может вызывать набухание целлюлозы лишь в том случае, если целлюлоза предварительно обработана жидким аммиаком. Высокая точка кипения и вязкость моноэтаноламина указывают на ассоциацию, вероятно, с помощью мостиков О—Н...Ы, и, следовательно, [c.272]

    Синтетические смазочные масла. Нефтяные масла по многим показателям не удовлетворяют тем высоким требованиям, которые предъявляются к ним с развитием новой техники. Поэтому с недавнего времени в промышленности выпускают синтетические смазочные масла. В настояшее время наиболее широкое применение в качестве синтетических смазочных масел получили сложные эфиры алифатических спиртов и себациновой, азелаино-вой или адипиновой кислоты [44]. Однако во многих случаях соединения, содержащие циклы, имеют некоторые преимущества перед эфирами алифатических соединений. При наличии циклических групп в молекуле эфира повышается вязкость, улучшается термическая и гидролитическая стабильность. Сложные эфиры нафтеновых кислот и жирных спиртов имеют высокую температуру вспышки, высокий индекс вязкости. Кроме того, получение синтетических смазочных масел на основе природных нафтеновых кислот позволяет снизить себестоимость масел и расширяет ассортимент сырья. [c.86]

    Важным преимуществом диэфиров является возможность синтезировать соединения высокого молекулярного веса с лшлой испаряемостью из доступных алифатических спиртов и кислот с низким молекулярным весом. Наличие в таких соединениях двух реакционно способных групп позволяет получить соединения различного строения и свойств в зависимости от требований эксплуатации. К настоящему времени получены и исследованы десятки тысяч различных диэфиров, многие из которых могут служить основой высококачественных масел. [c.144]

    Исследовалась зависимость селективности растворителей от их химического строения и на основе установленных закономерностей сформулирован ряд принципов для направленного поиска эффективных экстрагентов [47—49] 1) введение в молекулу растворителя заместителей или гетероатомов с низкими вкладами в энтальпию испарения и с высокими значениями констант Гам-мета— Тафта 2) переход от алифатических соединений к соответствующим циклическим и гетероциклическим аналогам, проявляющим более высокую селективность 3) повышение растворяющей способности растворителей путем скелетной изомеризации молекул, предпочтительно фрагментов, удаленных от электрофильных центров 4) уменьшение размеров цикла или числа углеродных атомов в молекулах алифатических растворителей 5) взаимное расположение заместителей в молекулах растворителей, обеспечивающее минимальное экранирование электрофильных центров и невозможность образования внутримолекулярных водородных связей 6) переход от сильноассоциированных растворителей к слабоассоциированным производным (например, метилирование амидов, цианоэтилирование спиртов) 7) использование в качестве разделяющих агентов неидеальных смесей [c.57]

    А. И. Башкиров разработал хорошо управляемый процесс мягкого окисления высокомолекулярных парафинов, позволяющий получать в качестве основного продукта реакции предельные алифатические спирты, в которых преобладают соединения с таким же числом атомов углерода, как и у исходных парафинов [55, 56]. Процесс этот прошел опытно-промышленную проверку п в настоящее время внедряется в заводском масштабе. Особенность этого метода окисления парафииа состоит в том, что, регулируя процесс при помощи таких факторов, как температура,. скорость подачи газа-окислителя и концентрацию в нем кислорода, а также продолжительность окисления, удалось осуществить процесс жидкофазного окисления высокомолекулярных парафинов с высокой степенью избирательности. Процесс ведется нри температуре 165—170, продолжительность его 4 часа, подача газа-окислптеля (азото-кислород-ная смесь, содержащая 3% кислорода) 500 — 1000 л на 1 кг парафина в 1 час. В этих условиях достигается выход спиртов в 60% на взятый на окисление парафин. Основную часть продуктов окисления составляют вторичные спирты с тем же числом атомов углерода в молекуле, что и в исходном парафине. Процесс осупиютвляется по приводимой схеме 1. Если брать для окисления сравнительно широкие фракции парафинов ( is— Сзо), то удается получить широкую гамму высокомолекулярных алифатических спиртов предельного ряда. Области технического и бытового применения этих спиртов весьма обширны и многообразны. Спирты Си—Сго имеют особенно большое значение как исходные материалы для производства моющих и смачивающих средств, кото])ые до настоящего времени приготовлялись из пищевых жиров. Высокомолекулярные одноатомные [c.81]

    Для того чтобы ПАВ было способно образовывать мицеллы, оно должно удовлетворять двум требованиям — с одной стороны, (/иметь достаточно большой углеводородный радикал, снижающий / растворимость в воде, а, с другой - /обладать достаточно сильной полярной группой, способствующей его растворимости. Этому требованию удовлетворяют не все поверхностно-активные вещества. Например, для гомологического ряда алифатических спиртов ми-целлообразование вовсе не характерно. При этом для соединений с числом углеродных атомов меньше 7 мицеллообразованию мешает малая длина углеводородного радикала, а для более высоких гомологов — сравнительно низкая гидрофильность полярной группы. Известно также, что для многих коллоидных ПАВ, например, для оксиэтилированных спиртов, независимо от числа оксиэтиле-новых групп, т. е. от полярности гидрофильной части молекулы, мицеллообразование становится возможным лишь при Длине углеводородного радикала, превышающей 7—8 углеродных атомов. [c.400]

    Кратко остановимся на попытках истолкования природы явления хемосорбции органических соединений в области высоких анодных цотенциалов. В ранних работах, относящихся к периоду открытия этого явления, считали, что оно связано с наличием в молекуле органического соединения валентно-ненасыщенных групп. Большая роль придавалась л-электронному взаимодействию органических молекул с поверхностью (образование поверхностных соединений типа я- комплексов). Хотя эти представления хорошо объясняли, например, высокую адсорбируемость диенов с легко поляризуемой системой сопряженных п-связей, при трактовке причин адсорбируемости при высоких анодных потенциалах таких соединений, как алифатические спирты, встретились трудности. Явление хемосорбцни при высоких анодных потенциалах пытались истолковать на основе лигандной теории хемосорбции. Полагали, что хемосорбированные органические частицы, как и другие адсорбирующиеся компоненты раствора, включаются в полусферу комплекса, в котором центральной электронно-акцеп-торной частицей является ион Р1" +. Это объясняло конкурентный характер адсорбции, но нередко вступало в противоречие с ожидаемыми корреляциями между склонностью органических веществ к ком плексообразованию с платиновыми ионами и их адсорбируемостью в области высоких анодных шотенциалов. [c.122]

    Свойства полиамидов и области их применения. Полиамиды— твердые роговидные полимеры с высокой температурой плавления (например, 218°С у капрона, 264°С у найлона). Высокая температура плавления объясняется значительным процентом кристаллической фазы и образованием водородных связей между цепями (рис. 66, а). Полиамиды обладают хорошими механическими свойствами. Они весьма стойки к истиранию и отличаются высокой разрывной прочностью (700—750 кгс1см ). Плотность 1,14. Полиамиды регулярного строения очень стойки к действию обычных растворителей. Только сильно полярные соединения, такие, как фенол, крезолы, муравьиная кислота, растворяют полиамиды такого типа. Смешанные полиамиды растворяются при нагревании в низших алифатических спиртах (метиловом, этиловом) в смеси с небольшими количествами воды (от 10 до 20%). При остывании и хранении растворы смешанных полиамидов преврашаются в гелеобразную массу. При нагревании гель можно снова превратить в прозрачный раствор. [c.236]

    Под названием реакция Шмидта объединяются три реакции, включающие присоединение азотистоводородной кислоты к карбоновым кислотам, альдегидам и кетонам, а также к спиртам й олефинам [230]. Самая типичная из них — реакция с карбоновыми кислотами — представлена на схеме выше [231]. Универсальным катализатором является серная кислота, используются также кислоты Льюиса. Хорошие результаты получаются в том случае, когда К — алифатическая группа, особенно с длинной цепью. Если К = арил, выходы продукта могут быть любыми, причем для стерически затрудненных соединений типа мезитойной кислоты они наиболее высоки. Преимущество этого [c.159]

    Аналогично алифатические альдегиды я спирты в основном с высоким выходом пр исоединяются к перфторолефинам и а,р-не-насыщенным карбонильным соединениям н в особенности к эфиру малеиновой кнслоты. [c.360]

    Углеводородами называются соединения, состоящие из углерода и водорода. Различают алифатические предельные и непредельные углеводороды, циклические (нафтены) н ароматические. Наиболее важным источником получения предельных углеводородов состава С Н2 -2 является нефть. При перегонке последней отбирают фракцию т. кип. 150—170° —бензин, нз которой дробной перегонкой получают легкий бензин уд. в. 0,64 -0,66, т. кип. 40 -75°, известный под названием петролейный эфир. Выше кипящая фракция —средний бензин, т. кип. 70—120 , уд. в. 0,70—носит название авиационного бензина, его применяют для приготовления йод-бензнна (раствора йода в бензине, используемого иногда для дезинфекции) и особенно широко в технике для двигателей с зажиганием и в качестве растворителя. Фракцию г. кип. 150 —300° — керосин используют в качестве горючего также для двигателей внутреннего сгорания и иногда в быту, а также для освещения. Фракции, перегоняющиеся без разложения при температурах Кипения, более высоких, чем керосин, называют соляровыми маслами их используют в качестве дизельного топлива, смазочных масел или путем Крекирования превращают в более легкие углеводороды. Перегонкой с водяным паром фракций, кипящих выше 300", получаюг вазелин, который представляет собой густую смесь жидких и твердых углеводородов. Из нефти выделяют, кроме того, смесь твердых углеводородов, называемую парафином, Предельные углеводороды получают и синтетическим путем восстановлением галогенопроизводных, спиртов, альдегидов, кетонов, непредельных соединений, декарбоисилированием кислот, электролизом солеи жирных кислот н др. [c.105]

    Удачное использование высокой температуры кипения органического реагента в сочетании со свойствами, которые обеспечивают возможность его регенерации и простоту В1ыделения извлекаемого металла, реализованы в способе получения вольфрамовой кислоты высокой чистоты (Ф. А. Форвард, А. Визсолий). Способ основан на способности вольфрамовой кислоты взаимодействовать с этиленгликолем, глицерином и другими двухатомными и многоатомными алифатическими спиртами с образованием высокорастворимых соединений. [c.99]

    Для несопряженных алифатических и алициклических карбонильных соединений селективность восстановления кетонов весьма высока, однако этого не наблюдается в случае сопряженных альдегидов (см. выше, например, восстановление бензальдегида). Тем не менее этот способ можно использовать для восстановления сопряженного альдегида в присутствии несопряженного. Например, восстановление смеси бензальдегида с циклогексанкарбальдегидом дает бензиловый спирт (85%) циклогексанкарбальдегид при этом регенерируется количественно. [c.291]


Смотреть страницы где упоминается термин Спирты алифатические высшие соединениям: [c.334]    [c.344]    [c.235]    [c.45]    [c.145]    [c.121]    [c.305]    [c.493]    [c.73]    [c.339]    [c.344]    [c.400]    [c.115]    [c.183]    [c.201]    [c.176]    [c.106]    [c.473]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Алифатические соединения

Алифатические соединения спирты

СПИРТЫ Алифатические спирты

Синтез кислородсодержащих соединений метанола и высших алифатических спиртов

Спирты алифатические

Спирты алифатические высшие

Спирты высшие



© 2025 chem21.info Реклама на сайте