Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Омические процессы в электрических

    Кроме нейтрализации заряда в газовом разряде, в процессе разрушения (разделения) поверхностей происходит сток заряда через омическое сопротивление поверхностей контакта в точку контакта и их рекомбинация, В результате этих процессов электрический заряд, оставшийся на разделенных поверхностях, будет меньше заряда двойного слоя. [c.356]


    При катодной защите отрицательный полюс источника постоянного тока подключают к трубопроводу, а положительный - к искусственно созданному аноду-заземлению. При включении источника тока электрическая цепь замыкается через грунтовый электролит, и на оголенных участках трубопровода в местах повреждения изоляции начинается процесс катодной поляризации (рис. 6.1). В простейшем случае получают трехэлектродную систему. На рис. 6.2, а изображена кор- / розионная диаграмма такой системы при полной поляризации, когда. омическим сопротивлением в связи с высокой электропроводностью грунтового электролита можно пренебречь. [c.113]

    Как следует из сказанного, реакционные аппараты, применяемые для процессов конденсации, несложны и не имеют специфичного устройства. Примером аппаратов этого типа может служить плавильный котел, изображенный на рис. 190. Котел выполнен из обычного пли легированного чугуна (наприме]), никелистого), снабжен якорной мешалкой и обычной гарнитурой. Аппарат обогревается электрическим током и помещен в кожух электрической печи омического сопротивления. [c.349]

    Схема лабораторной установки для испытания макета медно-магниевого элемента показана на рис. 40.1. Установка имеет некоторые особенности. Элемент приводят в рабочее состояние при замкнутой электрической цепи. Разряд элемента проводят через постоянное омическое сопротивление, поэтому в процессе активации элемента повышается и напряжение, [c.248]

    Вторым способом массопереноса служит перенос частиц под действием электрического поля. Так как раствор электролита обладает некоторым омическим сопротивлением, то при протекании через него тока возникает омическое падение потенциала, под действием которого скорость движения ионов изменяется. Это явление называется миграцией. Миграция наблюдается только для заряженных частиц. В процессах электровосстановления миграция облегчает подход катионов и замедляет подход анионов к электроду. В процессах электроокисления наблюдается обратная картина. [c.148]

    Второй механизм массопереноса — миграция — связан с перемещением заряженных частиц под действием электрического поля, которое создается за счет омического падения потенциала при прохождении через раствор электрического тока. При протекании катодных процессов миграция ускоряет доставку к поверхности электрода катионов и замедляет подвод анионов. На перемещении незаряженных частиц механизм миграции в первом приближении не отражается . Создавая избыток постороннего индифферентного электролита (фона), можно резко уменьшить омическое падение потенциала в растворе и тем самым элиминировать миграцию. [c.172]


    Гальванические первичные элементы. Гальваническими первичными элементами называют устройства для прямого преобразования химической энергии заключенных в них реагентов в электрическую энергию. Реагенты (окислитель и восстановитель) входят непосредственно в состав гальванического элемента и расходуются в процессе его работы. После расхода реагентов элемент не может больше работать. Таким образом, это источник тока одноразового действия, поэтому его еще называют первичным химическим источником тока. Гальванический элемент характеризуется э. д. с., напряжением, емкостью и энергией, которую он может отдать во внешнюю цепь. Э. д. с. элемента определяется термодинамическими функциями протекающих в нем процессов (см. 53). Напряжение элемента и меньше э. д. с. из-за поляризации электродов и омических потерь. [c.358]

    Особенностью ЭХОМ по сравнению с другими методами электролиза является высокая скорость растворения металлов. Плотности тока при электрохимической обработке металлов в сотни и тысячи раз выше плотностей тока других электрохимических процессов. Для обеспечения высоких скоростей процесса (высоких плотностей тока) при относительно невысоких напряжениях необходимо снизить омическое падение напряжения и поляризацию электродов. Омическое падение напряжения достигается снижением зазора между электродами (до 0,1 мм) и использованием раствора электролита с высокой электрической проводимостью. Более сложной, но в то же время очень важной задачей является снижение поляризации. [c.371]

    Необходимо, однако, отметить, что для некоторых электродов, например платинового, в щелочных растворах перенапряжение в зависимости от концентрации щелочи не подчиняется уравнению замедленного разряда. Поэтому возникла необходимость в экспериментальной проверке скорости процесса разряда, что и было осуществлено Б. В. Эршлером, П. И. Долиным и А. Н. Фрумкиным, которые показали, что в некоторых случаях удается подобрать такие условия, когда при измерении скорости суммарной электрохимической реакции можно непосредственно измерять скорость одного этапа реакции, например разряда иона с переходом его в адсорбированный атом. Для этого платиновый электрод в определенном интервале потенциалов покрывают адсорбированными атомами водорода количество этих атомов на единице поверхности платинового электрода зависит от потенциала электрода. По мере увеличения анодной поляризации количество их убывает. При потенциале на одну десятую вольта положительнее, чем потенциал обратимого водородного электрода, выделение молекулярного водорода практически прекращается таким образом, можно полагать, что по сравнению с другими процессами оно не играет существенной роли. Если теперь такому электроду сообщить через раствор некоторое количество электричества, то единственно возможной электродной реакцией становится реакция разряда ионов водорода с переходом их в адсорбированные атомы. Дальнейшие стадии — образование молекул водорода — здесь не могут протекать. Для определения скорости процесса разряда удобнее применять переменный ток различной частоты. В самом деле, если электрод включить в цепь переменного тока, то он будет вести себя подобно конденсатору, т. -в. электроду будет эквивалентна электрическая схема, в котором емкость с и омическое сопротивление R включены параллельно. [c.322]

    Расчет скорости электрохимической коррозии в теории микроэлементов основывается на том, что материальный эффект коррозионного процесса обусловлен протеканием электрического тока между анодными и катодными участками поверхности металла. В соответствии с этим выражение для скорости коррозии может быть получено посредством сочетания закона Ома и Фарадея. Пусть АЕ означает разность потенциалов катода и анода, а Я — полное омическое сопротивление коррозионного элемента. Сила тока, который протекает между катодом и анодом коррозионной пары, равна по закону Ома [c.249]

    Схема моста, применяемого для измерения емкости, представлена на рис. 80. Идея моста состоит в том, что изменения потенциала исследуемого электрода, наблюдаемые при сообщении ему некоторого малого количества электричества Ад, сравнивают с колебаниями потенциала эталона сравнения определенной емкости С. При этом сообщаемое количество электричества не должно тратиться на электрохимическую реакцию оно должно расходоваться только на заряжание и разряжение электрода, которые необходимо проводить столь быстро, чтобы на электродах не успевали проходить побочные процессы (адсорбция и др.). Однако при измерениях не удается полностью исключить возможность протекания электрохимических реакций на поверхности электрода. Таким образом, исследуемый электрод можно уподобить конденсатору с утечкой, т. е. конденсатору с параллельно включенным сопротивлением Я. Поэтому в соответствующем плече моста параллельно с магазином емкостей должно быть включено сопротивление Я. С повышением частоты переменного тока доля тока, расходуемого на электрохимическую реакцию, уменьшается и утечки влияют менее существенно. При измерениях определяют емкость электрической ячейки в целом, а не только изучаемого электрода. Для определения емкости исследуемого электрода в ячейку вводят вспомогательный инертный электрод, поверхность которого в несколько раз больше поверхности исследуемого электрода между этими электродами и пропускают переменный ток высокой частоты. В этих условиях колебания потенциала исследуемого электрода велики по сравнению с колебаниями потенциала вспомогательного электрода и, следовательно, измеренная емкость будет практически равна емкости исследуемого электрода. Для компенсации омического сопротивления электролита в измерительной ячейке 4 включают сопротивление магазина Ям- [c.190]


    Известно (см. гл. I), что возникновение емкости в цепи переменного тока приводит к сдвигу фаз между током и напряжением на 90°. При электрохимическом процессе этот сдвиг будет меньше из-за отставания кинетики электродной реакции от практически мгновенного заряжания двойного слоя. Учитывая физические закономерности для переменного тока, такую систему можно заменить электрически эквивалентной схемой (э. э. с.) из емкости и омического сопротивления, включенных либо последовательно, либо параллельно. Такая э. э. с. ведет себя в переменном токе подобно изучаемому электроду. Это дает возможность описать поведение электрода с помощью электротехнических формул. [c.271]

    Аналогичные процессы возникают в электрической цепи, состоящей из омического сопротивления и емкости (см. параграф 3.2). Разгон и торможение какого-либо двигателя вследствие инерции ротора и зависимости крутящего момента от угловой скорости вала в ряде случаев протекают так же, как процессы в системе первого порядка. Нестационарный теплообмен между средами, разделенными стенкой вследствие ее теплоемкости, может служить еще одним примером переходного процесса в системе первого порядка. Таким образом, экспоненциальная переходная функция для систем первого порядка может быть вызвана разными причинами, но общим для этих совершенно разных систем является изменяющееся со временем накопление некоторой физической величины (объема жидкости, напряжения электрического тока, угловой скорости вала двигателя, температуры стенки и т. п.), определяющей состояние системы. [c.48]

    Еще одним примером апериодического звена является электрический контур, состоящий из омического сопротивления R и конденсатора емкостью С (рис. 3.6). Процессы в таком контуре описываются известными из электротехники уравнениями [c.80]

    Рассмотренная электрическая модель в принципе соответствует и большим уровням сигнала, когда условие АЕ С (и ) не выполняется. При этом все элементы схемы, за исключением становятся нелинейными, и их электрические параметры сложным образом зависят от мгновенных значений приложенного напряжения и протекающего тока. Поэтому такая модель при больших сигналах пригодна лишь для качественного понимания взаимосвязи происходящих процессов. В частности, все сказанное о влиянии емкости двойного слоя и омического сопротивления, об обратимости электрохимической реакции справедливо и для больших уровней сигнала. [c.308]

    Использование электрической энергии рассматривается в специальных курсах электротехники. Однако в химических производствах имеются специфические особенности расходования электроэнергии. Например, в электрохимических процессах средством снижения расхода электрической энергии является устранение омических потерь в контактах- и токоподводящих шинах, уменьшение сопротивления электролита за счет повышения его электропроводности и сокращения расстояния между электродами, в ряде случаев уменьшение поляризации электродов и перенапряжения. В электрических печах расход энергии зависит от конструкций печей, качества электродов, сопротивление которых стремятся снизить, силы питающего тока и от ряда других причин. [c.50]

    Отметим, во-первых, что последовательному соединению пружины и поршня соответствует параллельное соединение сопротивления и емкости и наоборот. Во-вторых, рис. 9, б дает не единственный пример формальной аналогии между электрическими и механическими релаксационными процессами. Так, последовательно соединенные индуктивность L и омическое сопротивление описываются сходным уравнением [c.117]

    Электрохимическая ячейка — это электрическая цепь, проявляющая при изменении на ней потенциала нелинейные свойства. При отсутствии процессов восстановления и окисления ее можно представить упрощенной эквивалентной схемой, включающей омическое (объемное) [c.129]

    При обсуждаемом здесь понятии омического падения потенциала речь ни в коем случае не идет о перенапряжений в смысле разности между потенциалом е и равновесным потенциалом бц. Омическое падение напряжения, строго говоря, нельзя причислить и к поляризации, которая определяется как разность потенциалов при протекании е ( ) и в отсутствие е (о) тока. Так как термин поляризации является более общим и так как это определение ничего не говорит о причинах, то представляется обоснованным омическое падение напряжения называть омической поляризацией. Поэтому следует говорить не об омическом перенапряжении, а об омической поляризации. При теоретическом исследовании механизма электродных процессов введение и обсуждение величин, относящихся к омическому падению напряжения, не представляет никакого интереса. Однако при экспериментальных исследованиях омическое падение напряжения часто играет большую роль. Поэтому падение потенциала за пределами двойного электрического слоя, которое здесь будет называться омической поляризацией, нужно элиминировать при электрохимических измерениях. [c.411]

    Для обессоливания воды используются многокамерные электродиализа торы, в которых на несколько сотен рабочих камер приходится только две электродные. В такой схеме электродиализа электроды играют лишь вспомогательную роль они служат для подвода тока. Селективные свойства катионо- и анионообменных мембран позволяют осуществлять процесс обессоливания во всех, расположенных через одну, камерах обессоливания, и процесс концентрирования раствора — в граничащих с ними камерах концентрирования. Многокамерные аппараты выгодно отличаются от трехкамерных тем, что в них к минимуму сводятся затраты электрической энергии на процесс электролитического разложения воды и преодоления омического сопротивления раствора в электродных камерах. [c.471]

    Довольно часто скорость электрохимического процесса определяется переносом реагирующих компонентов к поверхности электрода за счет диффузии или конвекции. В других процессах решающую роль играет омическое падение потенциала в растворе. В данной части книги излагается феноменология процессов переноса в растворах электролитов — миграции и диффузии. Хорошо известно, что прохождение электрического тока связано с движением заряженных компонентов. Однако при этом мы не ставим перед собой задачу выразить количественно электропроводность через молекулярные свойства компонентов. Такой подход обусловлен тем, что для приложений совсем не требуется предсказывать свойства переноса с помощью молекулярной теории— вполне достаточно знать измеренные значения соответствующих величин. [c.243]

    По теории местных элементов скорость коррозии (или пропорциональный ей электрический ток, возникающий в результате работы локальных гальванических пар) зависит не только от электрохимических свойств электродов этих пар, но и от омического сопротивления той среды, в которой совершается процесс коррозии и которая отделяет анод от катода. Определяющие скорость коррозии соотношения удобнее выразить графически при помощи так называемых коррозионных диаграмм. На коррозионной диа- [c.468]

    Коррозионные диаграммы, построенные на основе представлений теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением веса образца за единицу времени, отнесенного к единице его поверхности, или (в электрических единицах) плотностью тока i. Коррозионные же диаграммы, приведенные на рис. 96 и 97, построены в координатах потенциал — сила тока (т. е. не включают в себя величины плотности тока, непосредственно характеризующей скорость коррозии). Для ее расчетов нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо определить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных — катодные. Это позволит найти общую скорость катодной и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зная стационарные потенциалы, можно, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, по которой можно определить максимально возможную силу тока. Предполагая, что омические потери ничтожно малы, и зная, как распределяется поверхность между анодными и катодными зонами, можно вычислить скорость коррозии. Этот сложный способ, дающий не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.471]

    По теории местных элементов скорость коррозии (или пропорциональный ей электрический ток, возникающий в результате работы локальных гальванических пар) зависит не только от электрохимических свойств электродов З тих пар, но и от омического сопротивления среды, в которой совершается процесс коррозии и которая отделяет анод от катода. Определяюигне скорость коррозии соотиошения удобнее выразить гра( )ически при помощи так называемых коррозионных диаграмм. На коррозионной диаграмме (рис. 24.4) потенциалы анода и катода (или потенциалы анодного и катодного процессов) представлены как функция снлы тока. Когда нет коррозионного процесса и сила тока равна нулю, начальные значения потенциалов на аноде и катоде должны отвечать обратимым потенциалам анодной и катодной ё р реакций в заданных [c.496]

    Абсолютная разность E — =о складывается, во-первых, из омического падения напряжения внутри электрохимической ячейки (между катодом и анодом) ом=/- цепи (Рцепи — внутреннее сопротивление цепи), и, во-вторых, из поляризаций катода АЕц и анода АЕл. Поляризация каждого из электродов представляет собой изменение гальвани-пвтенциала на границе электрод — раствор по сравнению с его равновесным значением, вызванное прохождением электрического тока. Электрический ток, в свою очередь, связан с протеканием электродного процесса (фарадеев-ский ток) и с заряжением двойного слоя (ток заряжения). Если свойства поверхностного слоя не изменяются во времени, то протекающий через электрод ток определяется только скоростью самого электродного процесса и размерами электрода. В этих условиях плотность тока i=l/s (s — поверхность электрода) служит мерой скорости электрохимической реакции. Поляризация электрода обусловлена конечной скоростью электрохимического процесса, а потому она является некоторой функцией плотности тока AE AE(i). Функциональная зависимость АЕ от i (или i от АЕ) называется поляризационной характеристикой. Задача электрохимической кинетики заключается в установлении общих закономерностей, которым подчиняются поляризационные характеристики, с целью регулирования скорости электродных процессов. Эта задача чрезвычайно важна, поскольку уменьшение поляризации при заданной плотности тока позволяет существенно повысить КПД использования электрохимических систем. [c.201]

    Электрокоррозия. Сюда относятся случаи электрохимической коррозии металлов, протекающие под влиянием электрического тока от внешнего источника. Здесь в основе явления, как уже отмечалось, лежит самопроизвольно возникающий процесс электролиза. В качестве примера рассмотрим электрокоррозяю железного трубопровода во влал ной почве под влиянием так называемых блуждающих токов. Они, например, получаются в результате ответвления тока от рельсов электрифицированного транспорта, работающего на постоянном токе и использующего рельсы в качестве обратного (обычно отрицательного) провода. Такое ответвление в особенности возможно на стыках (где омическое сопротивление больше) при условии недостаточной изоляции рельсов от грузгга. Блуждающие токи возникают также и от других электрических установок, использующих заземление (например, телеграф). [c.362]

    Здесь часть общей энергии гРг я расходуется на преодоление омического сопротивления (внутри системы), а другая часть г/ (фа — фк)—на осуществление электрохимических реакций на электродах. Так, например, в электролитной ванне Р11+1НС1, Н20 2 Р1 электрическая энергия (фа—Фк) расходуется на осуществление химической реакции НС1-> /гНа + /гСЬ, пре дставляющей собой сумму двух электродных процессов анодного — с выделением газообразного хлора и катодного — с выделением водорода. [c.132]

    Для предохранения от повышенного оплывания положительной активной массы в последнее время начинают добавлять в нее мел-конарезанные химически стойкие волокна, например из лавсана, поливинилхлорида и др., или связующее из фторопласта. Кроме того, некоторые аккумуляторы собирают с двойными сепараторами. Второй сепаратор из стеклянных волокон, прижатый к положительному электроду, служит для задержки оплывания активной массы. Так как такой сепаратор затрудняет проникновение кислоты к положительной активной массе и увеличивает омическое сопротивление в аккумуляторе, то одновременно с некоторым увеличением срока службы сепараторы из стеклянного волокна снижают емкость аккумуляторов. Диоксид свинца в отличие от РЬ504 проводит электрический ток. Его удельное электросопротивление равно 0,25 Ом-см. Если в шлам оплывет много РЬОг, так, что диоксид свинца заполнит шламовое пространство и коснется одновременно обоих электродов, между ними образуется токопроводящий мостик. В контакте с отрицательным электродом РЬОг восстанавливается до свинца, что вызывает короткое замыкание, выводящее аккумулятор из строя. При попытке заряда такого аккумулятора ток будет проходить по мостику и вместо процесса заряда произойдет только разогрев аккумулятора. Мостики из РЬОг и образующейся из него свинцовой губки могут возникнуть также вокруг сепараторов [c.365]

    Схематически процесс обессоливакия морской воды показан на рис. 1Х-59Применяемый с этой целью аппарат состоит из 300—600 секций, расположенных между электродами. Для снижения электрических потерь омического характера поперечный размер секций составляет всего лишь 1,016 мм. Как видно из рисунка. [c.629]

    Понятие омической поляризации (т]ом) как омического падения потенциала в электролите и в покрывающих электрод слоях, которое может возникнуть при протекании тока, введено Боуденом и Эйгаром 280. Следовательно, здесь речь идет о разности потенциалов, которая возникает за пределами двойного электрического слоя. Поэтому на электрохимические процессы это омическое падение напряжения не влияет. Существуют лишь определенные экспериментальные трудности, связанные с необходимостью устранения этого омического падения напряжения при измерениях перенапряжения. Величина омической поляризации зависит не от электрохимических процессов, а от аппаратурного оформления и от электропроводности электролитов и покрывающих слоев электрода. Поэтому омическая поляризация в высшей степени зависит от параметров аппаратуры, например. [c.410]

    Диэлектрическая проницаемость исследуемых масел (г) в процессе окисления не менялась. Из электрических показателей наиболее чувствительными, непосредственно связанными со склонностью масел к окислению, оказались тангенс угла диэлектрических потерь (tg8) и электропроводность. При этом как в исходных, так и в окисленных маслах диполь-но-релаксацйонная поляризация отсутствовала. Диэлектрические потери в этих маслах обусловлены сквозной омической проводимостью, поэтому величина tgS окисленных масел и. характеризовала электрическую стабильность исследуемых образцов. [c.501]

    Центробежный эффект разделения не является единственным механизмом, который может наблюдаться в плазменной центрифуге. Наличие источников тепловыделения в плазме, связанных с омическими потерями при протекании электрических токов и вязкой диссипацией, приводит к возникновению в разделяемой смеси градиентов температуры, которые в свою очередь вызывают термодиффузионные процессы. Кроме того, в плазменной центрифуге со скре-щёнными радиальным электрическим и осевым магнитным полями радиальный ионный поток в условиях замагниченности электронной составляющей, вызывает разделительные эффекты, связанные с селективностью передачи направленного импульса от ионов к нейтралам ( ионный ветер ) [35-38. Обычно действие ионного ветра приводит к обогащению тяжёлым изотопом прикатодной области. [c.335]


Смотреть страницы где упоминается термин Омические процессы в электрических: [c.228]    [c.228]    [c.170]    [c.174]    [c.10]    [c.10]    [c.11]    [c.467]    [c.756]   
Химическая электротермия (1952) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте