Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсная резонансная спектроскопия

    Как уже было показано [см. уравнение (23)], возможно измерять концентрации (число частиц в 1 см ) в газах пламени при условии, что достигается насыщение, и максимальная яркость флуоресценции измеряется в абсолютных единицах. То же можно сделать для нестационарных сигналов флуоресценции, как теоретически показал Дейли [40], который называл этот метод импульсной резонансной спектроскопией. Этот же метод был использован Хаасом [41] для диагностики плазмы низкого давления. Когда наблюдается импульс флуоресценции, измерение времени затухания Дает константу скорости тушения (допуская наличие двухуровневой системы и простого экспоненциального затухания), в то время как измерение интегрированного по времени сигнала дает концентрацию атомов. [c.225]


    Таким образом, импульсная резонансная спектроскопия представляется весьма ценным методом измерения концентрации атомов и молекул в пламенах. [c.226]

    До недавнего времени в распоряжении экспериментаторов преобладали приборы ЯМР непрерывного режима, когда ядра с различными резонансными соотношениями поле частота последовательно возбуждаются за счет развертки поля или частоты. Эти приборы не позволяют решать сложные задачи на многих ядрах с достаточной чувствительностью и точностью измерений, поэтому вытесняются приборами нового поколения, где реализуется импульсная фурье-спектроскопия ЯМР —форма ЯМР с широкополосным возбуждением. Образец облучается последовательно одним или большим числом импульсов, причем импульсы радиочастотной мощности разделены одинаковыми или разными временными интервалами, и после воздействия импульсных последовательностей наблюдается усредненный спад свободной индукции (ССИ), который превращается в частотный спектр путем фурье-преобразования. [c.734]

    В наши дни большинство спектрометров ЯМР высокого разрешения работают в режиме Фурье-преобразования, при котором возбуждение создается мощными неселективными радиочастотными (РЧ) импульсами. Наиболее часто встречающейся проблемой при работе на таких спектрометрах является подавление резонансных сигналов растворителя. Поэтому возникает необходимость возбуждения одного ядра или одной спектральной линии спинового мультиплета без возмущения остальной части молекулы. После перехода импульсной Фурье-спектроскопии к своему новому этапу развития (двумерный эксперимент), роль и популярность селективных методов стали быстро возрастать. [c.4]

    Локальный анализ можно проводить только методами ЛИФ и КАРС. Они имеют и наиболее высокое временное разрешение. Метод КАРС или какой-либо другой метод спектроскопии комбинационного рассеяния универсальны, но имеют низкую чувствительность. Поэтому целесообразно использовать резонансную спектроскопию комбинационного рассеяния, так как чувствительность в этом случае выше. Из-за малой чувствительности спектроскопию комбинационного рассеяния сочетают с импульсным источником создания активных частиц. Тогда в малом объеме можно создать концентрации, достаточные для регистрации методом КАРС. Метод обычно применяют для исследования микроскопических элементарных процессов. [c.130]

    Спектры ЯМР обладают одной примечательной особенностью. Как правило, резонансная область, в которой могут наблюдаться сигналы ЯМР, оказывается не слишком плотно заполненной резонансными сигналами. Большая часть резонансной области вообще не содержит никаких сигналов. Это обстоятельство приводит к малой эффективности стационарного ЯМР, поскольку большая часть времени тратится на регистрацию пустой области. В импульсной Фурье-спектроскопии одновременно возбуждаются все резонансные сигналы, поэтому эффективность использования времени эксперимента повышается. [c.172]


    Метод кинетической абсорбционной спектроскопии, охватывающий электронную область спектра, хорошо известен как основной метод наблюдения за концентрациями радикалов, реагентов и конечных продуктов, образующихся в результате импульсного фотолиза. Однако этот метод стал широко использоваться во многих струевых разрядных установках только недавно. Основной трудностью является низкая оптическая плотность газа, связанная с малой толщиной поглощающего слоя и низкой концентрацией радикалов (метод атомной резонансной спектроскопии, рассматриваемый ниже, — важное исключение). Из-за низких оптических плотностей сканирование полосатых спектров неизвестных химических систем затруднительно. Этот метод более всего подходит для исследования радикалов, чьи электронные спектры поглощения достаточно точно определены. [c.313]

    В последние годы наиболее интенсивно развивались методы получения изотопов ртути, связанные с использованием фотохимических процессов, которыми принято называть процессы, основанные на химических реакциях возбуждённых частиц, а также на реакциях, фотосенсибилизированных возбуждёнными атомами. Фотохимические реакции органических соединений изучались ещё в XIX веке. К 50-м годам XX века уже были получены заметные успехи в исследовании механизмов фотохимических реакций, а в 60-70-х годах фотохимия пережила подлинный ренессанс, связанный с развитием квантовой химии и квантовой электроники, теории и практики электронной спектроскопии, развитием новых эффективных методов исследования (импульсного фотолиза, хроматографии, оптической резонансной спектроскопии и др.). К настоящему времени показано, что при фотоинициировании могут протекать такие реакции, которые не идут или весьма затруднены при любых других воздействиях (например, тепловых), что и определяет перспективность их использования. [c.488]

    Обычно С-спектры регистрируют с помощью импульсной фурье-спектроскопии. (Та же техника пригодна и для снятия спектров ЯМР иных ядер, в том числе и Н.) При этом с помощью мощного высокочастотного импульса возбуждают все резонансные частоты ядер одного вида (например, С). После этого кратковременного возбуждения ядра возвращаются в равновесное состояние. Связанное с этим процессом падение индуцированной намагниченности (спад свободной индукции, ССИ) измеряют перпендикулярно к полю Но (рис. 92). ССИ — это сложная интерферограмма, состоящая из множества перекрывающихся колебаний. После применения математической операции, называемой фурье-преобразованием, получают обычный [c.152]

    Принцип метода РФС заключается в следующем. В исследуемой системе (смеси газов) генерируются тем или иным способом атомы или свободные радикалы. Светом зондирующего источника исследуемые частицы переводятся в возбужденное состояние. Зондирующий источник настроен на длину волны, вызывающую возбуждение. Переход из возбужденного состояния в основное сопровождается излучением (флуоресценцией), что используется для контроля за изменением концентрации этих частиц во времени. Установка включает реактор и соединенные с вакуумной системой СВЧ-генератор для генерирования атомов в разряде, источник зондирующего излучения, приемник возникающей флуоресценции, фильтры и монохроматоры. Источником зондирующего излучения могут быть перестраиваемые лазеры и струевые разрядные лампы. Они охватывают диапазон длин волн от глубокого ультрафиолета до коротковолновой инфракрасной области. Для регистрации флуоресценции используются фотоумножители и счетчики Гейгера. Для кинетических измерений резонансно-флуоресцентная спектроскопия может быть применима в трех различных вариантах, Во-первых, в статических условиях, когда атомы и радикалы генерируются реакционной смесью. В таком варианте РФС-метод предназначался для изучения цепных разветвленных реакций горения водорода и фосфора. Во-вторых, РФС-метод часто используется в струевых условиях в сочетании с СВЧ-разрядом. Это позволяет измерить концентрацию атомов и радикалов и изучать их реакцию с реагентом-газом в объеме или гибель на поверхности. Этим же способом изучаются продукты той или иной элементарной реакции. В-третьих, РФС-метод применяется в сочетании с импульсным фотолизом. Максимальное значение константы скорости бимолекулярной реакции, измеряемой [c.359]

    Преобразование Фурье к сигналу свободной индукции, накопленному фотоспособом после серии 90°-ных импульсов. На пути реализации очевидных преимуществ фурье-спектроскопии ЯМР в течение 10 лет лежали всего лишь два препятствия во-первых, не было дешевых и компактных ЭВМ для выполнения быстрого преобразования Фурье и, во-вторых, необходимо было сочетать стабильность резонансных условий стационарных ЯМР-спектрометров со специфическими особенностями мощных когерентных импульсных радиочастотных систем. Решающим звеном в преодолении этих препятствий явился алгоритм быстрого преобразования Фурье, предложенный Кули и Туки в 1965 г. [491 он оказался пригодным для использования в мини-ЭВМ, бурный рост производства которых происходил как раз во второй половине 60-х годов. В это же время Эрнст [51] рассмотрел теоретические аспекты фурье-спектроскопии ЯМР высокого разрешения, а в ряде лабораторий стали применять когерентные ЯМР-спектрометры для опытов во вращающейся системе координат. [c.6]


    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Специального внимания заслуживает вопрос об измеренщ интенсивностей в ЯМР-ФП. Имеются в виду различные источ ники ошибок, такие, как низкая мощность импульса или надо статочно большие времена задержек в серии импульсов. В пер вом случае распределение мош,ности поля В оказывается раз личным в разных участках спектра, что приводит к различ ным углам поворота для отдельных резонансных сигналов Так как величина индуцированной поперечной намагниченное является функцией угла поворота, то интенсивности линии будут искажаться. В то же время если интервалы между импульсами слишком коротки, то ядра с длинными временами релаксации Ti булут не полностью восстанавливать г-намагниченность и интенсивности этих сигналов будут систематически занижаться, Для того чтобы устранить эти недостатки, необходимо тщательно проверить подбор условий эксперимента. В общем для получения правильных интегралов в импульсной фурье-спектроскопии требуется значительно большая тщательность в подборе условий, чем при использовании стационарного метода. [c.342]

    Ряд приборов сконструирован и построен в Физико-техническом институте АН СССР импульсные масс-спектроскопы для изучения быстротекущих процессов [1, 2], резонансный масс-спектрометр с высокой разрешающей силой [3, 4], двойной магнитный масс-спекторометр для определения малых примесей (10- %) [5]. [c.7]

    Данные о константах скорости диссоциации в основном получены в опытах с ударными волнами с использованием оптических (в широком смысле этого слова — от инфракрасной до рентгеновской спектроскопии) методов диагностики диссоциирующего газа. Одним из навболее точных методов регистрации состояния газа в релаксационной зоне ударной волны является лазерный шлв-рен-метод [74]. Аналогично измерениям скорости диссоцващви в ударных волнах скорость рекомбинации измеряется в потоке быстро расширяющегося газа, частично или полностью диссоциированного (например, при истечении газа в вакуум через сверхзвуковое сопло). Скорость рекомбинации определяется также методом импульсного фотолиза исходного молекулярного газа с последующей регистрацией релаксационного процесса. К перспективным методам изучения кинетики диссоциации относятся метод скрещенных молекулярных пучков [1, 103], высокочувствительная лазерная резонансная спектроскопия реагирующих газов [46, 55], а также сочетание различных методов — совместные вз-мерения в падающей и отраженной ударных волнах, оптическая накачка энергии в колебательные степени свободы газа перед фронтом или в релаксационной зоне за фронтом ударной волны, сжатие ударной волной с последующим быстрым расширением в вакуум [11, 12] и др. [c.78]

    Применение сходных методов в принципе возможно и в газовой фазе так, методом лазерной резонансно-абсорбционной импульсно-кинетической спектроскопии исследована кинетика реакций SiH2 + H2 и SiH2 + D2 в газовой фазе [179 .  [c.27]

    В разд. 4.2 мы исходили из предположения, что в эксперименте участвует только один сигнал, т. е. все ядра имеют одинаковую ларморову частоту, ту же, что и радиочастотное поле, попадающее таким образом точно в резонанс. В реальной спектроскопии такого не бывает ее предмет состоит как раз в измерении различий резонансных частот ядер образца. Для того чтобы на одном рисунке во вращающейся системе координат одновременио изобразить несколько частот, в большей части книги мы будем поступать весьма свободно, выбирая такую частоту вращения, чтобы картина была наиболее простой. При этом иам придется игнорировать все последствия нендеальиости условий поведения эксперимента. Однако, перед тем как войти в этот мир фантазий о бесконечно сильном и однородном поле В , о бесконечно больших (в масштабах импульсных последовательностей) временах релаксации, мы постараемся коротко описать ситуацию нарушения резонансных условий каким-либо не очень сложным способом. Если этот вопрос вас не интересует, то пропустите разд. 4.3.2 это не должно причинить серьезного ущерба вашим знаниям. Но разд. 4.3.3 и 4.3.4 следует обязательно уделить внимание, поскольку в них будут приниматься некоторые используемые в дальнейшем условия. [c.106]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]

    Каково же преимущество новой техники возбуждения по сравнению с традиционной стационарной спектроскопией Это вияснить весьма просто. Допустим, что спектр ЯМР с шириной 500 Гц обнаруживает 10 линий с полушириной 0,5 Гц. Для того чтобы записать этот спектр, мы обычно выбираем время зунпси 250 или 500 с. Очевидно, что только 2 % времени прохождения используется для регистрации интересующей нас информации, что соответствует времени, необходимому для измерения самих резонансных сигналов. Остающееся время фактически теряется впустую, на запись шума. При использовании обычного стационарного спектрометра с единственным генератором мы, впрочем, не имеем другого способа для записи неизвестного спектра, кроме медленного прохождения через спектральную область, проверяя в каждой точке, происходит ли поглощение или нет. Только импульсная техника дает нам метод, который позволяет существенно уменьшить время, необходимое для осуществленя этой части эксперимента. Практически наше ВЧ-поле становится полихроматическим. [c.247]

    В импульсной спектроскопии ЯМР с фурье-преобразованием за время между импульсами успевают релаксировать ие все 5щра По этой причине спектроскопия ЯМР % ие является количественным методом в той же мере, как, например, спектроскопия ЯМР >Н, и на спектрах кривые интегральной интенсивности обычно не вычерчиваются, Полукояи-чественные взаимосвязи сущеструют только между сигналами атомов углерода, находящихся в аналогичном химическом окружении примером может служить отношение интенсивностей линий (около 2 2 1) резонансных сигналов ароматических атомов углерода на рис. 4.28. Можно добиться и количественных соотношений мея интенсивностями линий, если к изучаемому раствору добавить ацетилацетонат хрома (III). Парамагнитные ядра хрома повышают скорость релаксации, ие вызывая чрезме]№ого уширения линий. Химики неохотно используют этот реагент, поскольку его не всегда легко отделить от изучаемого вещества. [c.129]

    Дополнительные методики. Имеется также несколько других интенсивно развивающихся областей применения спектроскопии ЯМР С в органической химии, интерес к которым возник сравнительно недавно. Показаны большие потенциальные возможности спектроскопии углерода для изучения химически индуцированной динамической поляризации ядер ХПЯ [22]. Начаты исследования спектров ЯМР С в нематической жидкокристаллической фазе [23]. В работе [24] сообщено о наблюдении отдельных сигналов ароматических и алифатических атомов углерода в твердых образцах антрацита и адамантана. В настоящее время развивается импульсная техника [25], позволяющая получать спектры С при полном подавлении спин-спинового взаимодействия с протонами и высокой чувствительности (с шириной линии 5—10 Гц) непосредственно в твердом теле. Этот метод (ядерная индукция в твердом теле с усилением за счет резонанса протонов) в принципе применим к любому ядру с низким гиромагнитным отношением и малым естественным содержанием в присутствии других ядер с большим гиромагнитным отношением, таких, как протоны. Резонансные сигналы метильных групп свободного и связанного диметилсульфоксида в водных растворах А1С1з в ДМСО показали, что спектры ЯМР 1 С могут стать очень важным методом изучения сольватных оболочек органических соединений [26.  [c.251]

    Методика кинетической спектроскопии с микрофотометрирова-нием спектра поглощения позволяет измерить скорость релаксации колебательно-возбужденных в результате колебательно-колебательного обмена с СО и N2 в соответствующих смесях. Для исследования колебательно-колебательного обмена N0 при столкновениях с ВзЗ, Н2О, НгЗ, ОгО и СН4 применяется метод импульсного микроволнового возбуждения состояния Ы0(ХЭД) у = 1) [196]. Оптическая флуоресценция в смесях N0- -+ N2 дает информацию о быстром почти резонансном обмене между электронно-возбужденной молекулой Ы0(Л 2+) и N2 [216]. Эксперименты по тушению инфракрасной флуоресценции использовались для измерения скоростей колебательно-колебательного обмена между СО и О2 [20а], а также СО и СН4 [20в]. Значения 2ав для всех смесей приведены в табл. 4.6 и рассмотрены ниже (разд. 4.5.3). [c.264]

    Использование пикосекундной, наносекундной и микросекундной импульсной спектроскопии пшюлило фогобиологам описать различные стадии фотолиза родопсина. Огектроскопия резонансного комбинационного рассеяния с временньш разрешением невидимому, позволит изучить динамику изменения структуры хромофора и сделать окончательный вывод, что изомеризация, происходящая в пикосекундной шкале времени, является первичным актом зрительного восприятия. Перед биохимиками стоит все еще очень сложная задача — понять природу темновых реакций. Необходимо разобраться с передатчиком, функционирующим в клетке при фотолизе родопсина, и выяснить структуру самого пигмента. [c.318]


Смотреть страницы где упоминается термин Импульсная резонансная спектроскопия: [c.55]    [c.564]    [c.11]    [c.204]    [c.107]    [c.559]    [c.127]    [c.159]    [c.273]   
Аналитическая лазерная спектроскопия (1982) -- [ c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Резонансные

Спектроскопия резонансная

ЯМР-спектроскопия импульсная



© 2024 chem21.info Реклама на сайте