Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фурье-спектроскопия преимущества

    В настоящее время традиционные стационарные спектрометры почти полностью заменены импульсными фурье-спектрометрами, хотя последние и имеют некоторые недостатки, связанные с ограниченным динамическим диапазоном, артефактами базовой линии и наложением частот. Тем не менее присущие фурье-спектроскопии преимущества, которые заключаются в гораздо более высокой чувствительности, более высоком разрешении и отсутствии искажения формы линии, сделали ее самым предпочтительным методом ЯМР. Существует несколько монографий, посвященных практическим аспектам фурье-спектроскопии [1.53—1.55]. [c.25]


    Время, необходимое для регистрации данных, выступает в роли значительно более важного ограничивающего фактора, особенно еслн полагать, что скорость переработки информации является основным преимуществом методов фурье-спектроскопии. Причина того, что регистрация выбранного в качестве примера эксперимента потребует 17 дней, заключается в неправильной формулировке проблемы мы просто перенесли на двумерный случай те идеи, которые были нормальными для одномерного спектра. [c.299]

    Аналогичный эффект насыщения необходимо учитывать и в импульсном ЯМР. Для того чтобы разность между населенностями двух зеемановских уровней восстановилась до значения, приближенно равного исходному, т.е. до значения, соответствующего распределению Больцмана, необходимо выждать интервал времени, превышающий в 3-4 раза значение времени спин-решеточной релаксации T . При решении задач, связанных с установлением структуры биологических молекул, типичным значением Ti является 3-5 с. Следует отметить, однако, что в фурье-спектроскопии отсутствует эффект уширения при насыщении, который наблюдается в w-ЯМР. Это преимущество фурье-спектроскопии не поддается прямой оценке и потому не столь очевидно. [c.45]

    Помимо равновесных реакций методами ЯМР можно исследовать и нестационарные химические реакции. В этом случае система сначала переводится в химически неравновесное состояние и затем ее переход к равновесию наблюдается как функция времени. Неравновесное состояние может быть создано методом остановленного потока [2.45—2.52], оптически индуцированными фотореакциями в связи с химически индуцированной динамической поляризацией ядер (2.53—2.56] или внезапным изменением параметра, влияющего на химическое равновесие. Преимущества фурье-спектроскопии как метода измерения параметров переходных процессов не вызывают сомнений [2.57]. [c.84]

    В полной аналогии с одномерной фурье-спектроскопией (разд. 4.3) чувствительность можно оптимизировать, используя преимущества мультиплексных методов измерения чем больше элементов объема наблюдается одновременно, тем вьппе чувствительность. [c.637]

    Однако в настоящее время широкому внедрению техники фурье-спектроскопии в обычные аналитические лаборатории препятствует высокая стоимость приборов и необходимость использования ЭВМ для преобразования интерферограмм в привычные спектры. С другой стороны, обязательное использование ЭВМ обеспечивает дополнительные преимущества метода — спектральные данные хранятся в цифровом виде в памяти ЭВМ. Благодаря этому может быть значительно снижен уровень шума путем повторного сканирования и усреднения сигнала, может быть проведена дополнительная обработка спектра умножение на коэффициент, вычитание из него другого спектра, например фона, приведение спектра к стандартному виду для последующего запоминания в качестве эталона или для передачи в центральный накопитель — банк спектров. Конечно, на дифракционных спектрометрах возможно выполнение тех же операций по обработке экспериментальных данных, но для этого они должны специально оснащаться ЭВМ. [c.153]


    Остановимся-на важнейшем аспекте, с которым, на наш взгляд, связаны дальнейшие перспективы применения ЯМР С. Речь пойдет о использовании интегральных интенсивностей в спектрах С как меры числа атомов углерода или о количественном анализе с помощью ЯМР В этой связи следует заметить, что количественному анализу с помощью С (установление изомерного состава, конформационный анализ, обнаружение примесей и т. п.) посвящено удивительно мало работ. В то же время очевидно, что повседневный интерес химиков-органи-ков к спектрам ЯМР в существенной степени определяется именно возможностями количественного анализа. Трудности количественного анализа с помощью спектров ЯМР С довольно убедительно освещены в предлагаемой книге. Любопытно отметить, что в некоторых случаях (например, при отсутствии задержек между импульсами) сигналы ЯМР С некоторых атомов углерода, имеющих большие времена релаксации, получаются более чем на порядок заниженными по интенсивности и, следовательно, могут привести к совершенно неверным результатам при количественном анализе. Очевидно также, что введение задержек между импульсами частично снимает преимущества импульсной фурье-спектроскопии перед стационарной методикой. Аналогичные трудности [c.7]

    Использование вычислительной техники позволяет осуществлять новый экспериментальный метод исследования вязкоупругих свойств полимерных материалов — метод многочастотного динамического анализа (МДА) [172]. При таком подходе в принципе в одном эксперименте может быть получена более полная информация о свойствах исследуемого материала, чем при синусоидальных колебаниях. Это связано с тем, что использование разложения импульса произвольной формы на сумму гармоник (Фурье-спектроскопия) дает характеристики, отвечающие набору частот как основной, так и высших гармоник одновременно. Метод МДА имеет преимущества при измерениях быстро изменяющихся значений вязкоупругих характеристик полимерных материалов в процессах полимеризации, отверждения, кристаллизации и т. п. Очевидно, что наибольшей информативностью будет обладать сигнал, имеющий одинаковую амплитуду для каждой гармоники. [c.102]

    Преобразование Фурье к сигналу свободной индукции, накопленному фотоспособом после серии 90°-ных импульсов. На пути реализации очевидных преимуществ фурье-спектроскопии ЯМР в течение 10 лет лежали всего лишь два препятствия во-первых, не было дешевых и компактных ЭВМ для выполнения быстрого преобразования Фурье и, во-вторых, необходимо было сочетать стабильность резонансных условий стационарных ЯМР-спектрометров со специфическими особенностями мощных когерентных импульсных радиочастотных систем. Решающим звеном в преодолении этих препятствий явился алгоритм быстрого преобразования Фурье, предложенный Кули и Туки в 1965 г. [491 он оказался пригодным для использования в мини-ЭВМ, бурный рост производства которых происходил как раз во второй половине 60-х годов. В это же время Эрнст [51] рассмотрел теоретические аспекты фурье-спектроскопии ЯМР высокого разрешения, а в ряде лабораторий стали применять когерентные ЯМР-спектрометры для опытов во вращающейся системе координат. [c.6]

    Кроме рассмотренных схем следует обсудить методы фурье-спектроскопии, основанные на применении интерферометров Майкельсона или Фабри — Перо. В настоящее время очевидны преимущества этих методов в ИК-спектроскопии, но до сих пор не делались попытки применить интерферометр Майкельсона [c.216]

    Фурье-спектроскопия имеет ряд больших достоинств. Два главных преимущества интерферометров перед обычными спектрометрами заключаются в следующем. Во-первых, это выигрыш в энергии за счет того, что при сканировании в каждый момент времени на приемник попадает излучение всего исследуемого спектрального диапазона длин волн, а не узкий его участок, определяемый в монохроматоре обычного прибора диспергирующей системой и щелями. Иными словами, в интерферометре в течение всего времени сканирования получается информация одновременно обо всем исследуемом спектральном диапазоне, а в обычном спектрометре в разные моменты времени получается информация только об узких спектральных полосах исследуемого диапазона. Данное преимущество интерферометров особенно важно в длинноволновой области, где интенсивность излучения источника мала и отношение сигнала к шуму является лимитирующим фактором. [c.270]

    Указанные преимущества обеспечивают такие достоинства фурье-спектроскопии, как очень высокая чувствительность и точность измерений интенсивности, особенно при многократном сканировании и накоплении сигнала очень высокое разрешение (до 10 СМ ) и высокая точность определения волновых чисел быстродействие, т. е. возможность быстрого исследования широкой спектральной области (время сканирования для интервала в несколько сотен см составляет менее 1 с), и др. Эти достоинства и определяют большие, зачастую уникальные возможности фурье-спектроскопии, которая уже находит широкое применение в различных направлениях науки и техники. Производятся приборы, [c.270]


    Перечислите основные типы ИК спектрометров. В чем преимущества фурье-спектроскопии  [c.292]

    Рассмотрим особенности импульсной Фурье-спектроскопии Я- № для детектирования ХПЯ. Эта техника имеет значительные преимущества перед обычной техникой стационарного ЯМР, однако при этом необходимо соблюдать некоторые предосторожности. [c.195]

    При использовании метода фурье-преобразования в спектроскопии ЯМР образец подвергают действию излучения, которое соответствует некоторому непрерывному интервалу частот (так называемое белое излучение). Во избежание насыщения системы излучение подается очень короткими импульсами. После импульса ядра испускают поглощенную энергию. Спектр этого излучения состоит из резонансных частот всех ядер в образце. Если имеются два невзаимодействующих между собой ядра, то испускаются две частоты VA и хх- Эти две частоты создают в детекторе картину биений , по которой можно рассчитать уа и хх- Такой процесс называют фурье-преобразованием. В случае нескольких частот анализ картины биений требует использования небольшой ЭВМ. Преимуществом метода фурье-преобразования является значительное увеличение чувствительности, обусловленное тем, что за время одного импульса детектируются одновременно все резонансные частоты, а не одна, как это имеет место при обычной спектроскопии ЯМР. Таким образом, можно использовать меньшее количество образца и исследовать спектры менее распространенных изотопов, например с. [c.502]

    Обычный метод получения спектров ЯМР состоит в том, что при плавной развертке (сканировании) радиочастоты или напряженности магнитного поля в каждый момент времени наблюдают только за одной точкой спектра. Для получения полного спектра требуется 5-10 мин, и по времени методика Фурье-преобразования имеет заметное преимущество. Возбуждая одновременно все ядра образца с помощью короткого, продолжительностью около 100 мкс, импульса мощного радиоизлучения и прослушивая излучаемые им частоты по мере возвращения ядер к равновесному распределению по энергии, можно получить интерференционную картину, содержащую всю информацию о спектре образца необходимое для этого время составляет порядка 1 с. К сожалению, полученная интерференционная картина не поддается непосредственной интерпретации, однако ее математическая обработка с помощью ЭВМ, называемая преобразованием Фурье, позволяет получить обычный спектр с разверткой по частоте. Швейцарский ученый Рихард Эрнст получил в 1991 г. Нобелевскую премию по химии за предложение Фурье-ЯМР-спектроскопии и многомерной ЯМР-спектроскопии (ученый узнал о присвоении ему премии в самолете, возвращаясь в Нью-Йорк из Москвы, где он читал лекции). [c.260]

    Импульсная спектроскопия значительно сокращает время, необходимое для получения спектра ЯМР спад индуцированного сигнала продолжается несколько секунд или долей секунды записанный в памяти ЭВМ, он преобразуется в спектр в частотном представлении за несколько секунд. Однако еще в большей мере преимущества импульсной методики становятся очевидными при необходимости накопления/полезных сигналов (слабая концентрация вещества, малая чувствительность для данного ядра и т. д.). Накопление спектров и сложение их в памяти ЭВМ позволяет улучшить соотношение сигнал шум в суммарном спектре в у/п раз, где и-число накоплений. В режиме развертки по частоте для накопления ста спектров в цифровом накопителе требовалось время порядка часа. В импульсном режиме накопление СИС обычно идет с частотой повторения 0,5-5 с, и для накопления ста спектров во временном представлении необходимо 1-10 мин, после чего следует Фурье-преобразование суммарного СИС в спектр в частотном представлении. [c.326]

    В многоканальных приборах (см. табл. 11.2) спектр /(Я) можно получить фурье-преобразованием регистрируемой интерферограммы. Преимущества фурье-спектрометров перед классическими дисперсионными щелевыми заключается в большей светосиле и возможности одновременного измерения всех компонент спектра. Фурье-спектрометры наиболее эффективны для исследования протяженных спектров слабых поглощений в ИК-области, в ИК оптико-акустической спектроскопии, а также для решения задач сверхвысокого разрешения (ЯМР-спектроскопия). [c.222]

    Созданы и все более широко применяются ИК-спектрометры на основе интерферометров (фурье-спектрометры), имеющие ряд важных преимуществ перед диспергирующими спектрометрами. Принципам их работы, а также вопросам их конструирования и применения посвящено много работ, например [3, 4]. Фурье-спектрометрия значительно превосходит дисперсионную спектроскопию при регистрации очень слабых спектров, при выполнении работ, требующих приборов высокого разрешения в широком интервале частот, а также при необходимости быстрого сканирования. Последнее обстоятельство часто является очень важным при анализе объектов окружающей среды, например, при анализе газов и жидкостей в потоке. [c.153]

    Сочетание газовых хроматографов и ИК-спектрометров в онлайновом режиме в настоящее время может быть реализовано на базе чувствительных и быстродействующих инфракрасных спектрометров, использующих принцип преобразования Фурье (ИК-фурье-спектрометров) [8]. Эта техника позволяет идентифицировать большое число фракций на одном и том же хроматографе как на обычных колонках (диаметр с1с = 2 - -4 мм), так и на микроколонках ( с = 0,5 мм) с сохранением многих преимуществ, характерных для хромато-масс-спектраль-ного метода, —таких, как быстрота анализа, малый расход вещества, возможность накопления и вычитания спектров, а также их автоматического сравнения и т. д. Сочетание газовой хроматографии и ИК-спектроскопии преимущественно используется для анализа веществ, для которых получаются хорошие спектры в газовой фазе в температурном интервале примерно до 350 °С. Хотя предложенная в работе [42а] техника поглощения в тонких пленках в принципе позволяет измерять спектры в жидком состоянии при работе в он-лайновом режи- [c.263]

    Однако очень серьезным недостатком быстрого прохождения является искажение сигнала, которое приводит к значительному снижению разрешения [1.14, 1.46]. Эти искажения формы линии могут быть исправлены соответствующими приемами расшифровки, которые используются в коррелящюнной спектроскопии и фурье-спектроскопии быстрого прохождения [1.47—1.50]. В методах быстрого прохождения может быть достигнута такая же чувствительность, как и в методах фурье-спектроскопии, и оба метода требуют практически одинаковых усилий при обработке данных. Первые же обладают тем преимуществом, что позволяют просматривать выделенные области спектров ЯМР. [c.24]

    Хорошо известны преимуш,ества фурье-спектроскопии по сравнению с обычными методами медленного прохождения. И хотя методы фурье-спектроскопии были впервые предложены в 1965 г. [4.1, 4.2] для повышения чувствительности, именно многообразие экспериментов во временной области объясняет необычайный прогресс современной ЯМР-спектроскопии. С одной стороны, фурье-спектроскопия позволяет непосредственно изучать зависяш,ие от времени явления, такие, как релаксащ я и обменные процессы. С другой стороны, с помощью импульсных экспериментов можно исследовать перенос поляризации и когерентности. Для осуществления многих экспериментов важно, чтобы возбуждение и регистрация, разделялись определенным интервалом времени. Это естественным образом приводит к разделению времени в двумерной фурье-спектроскопии. Дополнительным преимуществом фурье-спектроскопии по сравнению со стационарными методами является отсутствие искажений формы линий, связанных с быстрым прохождением и насыщением. [c.122]

    Стохастическое возбуждение в ЯМР предлагалось использовать в ряде случаев первоначально — для специально подобранной и широкополосной развязки [4.64, 4.65], а позднее — в качестве альтернативы одномерной фурье-спектроскопии [4.59, 4.66—4.69], поскольку в смысле требований к мощности РЧ-сигнала он имеет преимущества перед последней. В последнее время Блюмих, Зиссов и Кайзер [4.70—4.79] применили стохастический резонанс в двумерной спектроскопии. Они убедительно показали, что большинство результатов, получаемых при импульсном возбуждении [4.80], могут быть также получены с помощью стохастического возбуждения при соответствующей обработке данных. [c.147]

    В методах последовательной выборки по линиям выделяется колонка из элементов объема. С помощью линейного градиента поля, приложенного вдоль осевой линии колонки, можно получить необходимый разброс частот. Один эксперимент после преобразования Фурье дает информацию одновременно обо всей линии. Используя преимущества мультиплексности фурье-спектроскопии, можно достичь существенной экономии времени по сравнению с методами чувствительной точки. Различные методы линейного сканирования, описанные в этом разделе, отличаются способами селективного возбуждения или регистрации чувствительной линии . [c.642]

    Высокая разрешающая способность Фурье-спектрометров, высокая точность определения волновых чисел, возможность регистрации слабых сигналов, исследование широкой спектральной области одновременно — все эти преимущества Фурье-спектроскопии существенно расширяют возможности спектроскопической идентификации полимеров, изучения их структуры, исследования кинетики быст-ропротекающих реакций [135, 198. 358, 785, 879, 1018, 1019]. Кроме того, использование в Фурье-спектрометрах ЭВМ позволяет проводить математические манипуляции со спектрами, что заменяет методически очень сложную работу получения дифференциальных спектров [198]. Последнее особенно важно при исследовании полимерных смесей и полимерных композиционных материалов. [c.24]

    Новые возможности для количественного анализа открывают инструментальные преимущества ИК-спектроскопии фурье-преобразования, к числу которых относятся такие, как низкий уровень рассеянного света (менее 0,01%), хорошая точность измерения интенсивности сигналов (лучше чем 0,1%) и высокая точность измерения волновых чисел (лучше чем 0,01 см при использовании гелий-неонового лазера в качестве стандарта). В сочетании с компьютером можно осуществлять быстрое и точное накопление и вычитание спектров исследуемого вещества сравнения, что позволяет, используя кюветы с достаточной длиной оптического пути, проводить количественное определение микропримесей (10—20 млн ) даже в условиях сильного фонового поглощения. Еще одним преимуществом инфракрасной фурье-спектроскопии для количественного анализа является возможность четкой записи и сравнения спектров в широком интервале концентраций [8]. [c.271]

    Интерференционная, или фурье-спектроскопия, обладает по сравнению с обычно используемыми методами двумя достоинствами. Во-первых, она позволяет использовать все частоты излучения источника одновременно, а не последовательно, как в сканирующих приборах (выигрыш Фелжетта, названный так по имени ученого, впервые описавшего его). Выигрыш Фелжетта обусловлен улучшением соотношения 8 Ы, равным где М — число элементов спектра, которые желательно разрешить [8, 9]. Во-вторых, чувствительность фурье-спектроскопии выше, чем у дисперсионных методов, потому что в бесщелевую систему попадает больше излучения это преимущество называется выигрышем Жакино. [c.109]

    Очевидным выводом из выщеизложенного является то, что в будущем для контроля и управления отдельными контрольно-измерительными приборами будут использоваться малые специализированные ЭВМ, а также специально разработанная аппаратура в свою очередь связанная с более мощными ЭВМ. Последние предназначены для выполнения основных вычислительных операций, учета и выдачи документации. В таких системах существует определенная иерархия ЭВМ. Маргошес [12] проанализировал как технические, так и экономические преимущества встраивания ЭВМ в измерительную аппаратуру, в частности в ИК- и ЯМР-спектрометры. Использование встроенной ЭВМ является единственным практическим методом регистрации в фурье-спектроскопии. При этом по сравнению с обычными спектрометрами имеется еще два преимущества во-первых, детектор одновременно регистрирует излучение всех длин волн и, во-вторых, конструкция спектрометра упрощается, а скорость отдельных измерений увеличивается. Эти преимущества позволяют фурье-спектрометру регистрировать спектр значительно быстрее, чем обычному спектрометру. Используя усредненный сигнал, можно улучщить отношение сигна ч шум и, следовательно, получить более точный спектр. Обсуждается также применение фурье-преобразования в импульсной ЯМР-спектрометрии. Этот метод в сочетании с усреднением сигнала значительно расширяет возможности ЯМР. Так, например,спектр .С можно получить на образцах, не обогащенных этим изотопом. Применение обычного, не импульсного метода измерения спектра изотопа потребовало бы почти года машинной обработки. Маргошес показал также, что несмотря на более высокую стоимость аппаратуры со специализированными ЭВМ, возросшая стоимость единичного анализа окупается более высокой производительностью используемой аппаратуры. [c.364]

    Химический анализ полимерных материалов представляет собой весьма сложную задачу и часто требует значительных затрат времени. Обычно для выполнения полного анализа материала, особенно нового или неизвестного, необходимо использовать ряд современных физических аналитических методов. Обычно применяют методы ИК-, оптической, УФ- и ЯМРч пектроскопии, жидкостной и газовой хроматографии, дифференциального термического и термогравиметрического анализа и масс-спектрометрии [1]. В некоторых случаях используют методы измерения механических свойств, позволяющие контролировать процесс протекания химических реакций например, измерение деформационных свойств можно использовать для наблюдений за реакциями отверждения [1]. Однако для того, чтобы полностью охарактеризовать полимер, необходимо использовать несколько аналитических методов. Каждый из таких инструментальных методов обладает определенными преимуществами и недостатками. Так, например, ИК-спектры, содержащие информацию о наличии в полимере тех или иных функциональных групп, обычно получают для твердых образцов. Для исследования ИК-спектров поглощения необходимо готовить образцы в виде тонких пленок метод инфракрасной фурье-спектроскопии используют для наблюдений за реакциями на поверхности. Однако ни один из этих методов в отдельности непригоден для определения [c.58]

    В более ранних спектральных исследованиях в средней ИК-области, за исключением работы Энна и соавторов [42], использовали обычные дисперсионные приборы. При этом наблюдалась только одна узкая область ИК-спектра при медленном сканировании частоты в различных температурных режимах. До недавнего времени это считалось оптимальной организацией эксперимента. Однако с разработкой алгоритма быстрого преобразования Фурье появились новые возможности в связи с созданием нового метода — инфракрасной фурье-спектроскопии (ИКФС). Применение этого метода для исследования полимерных систем обсуждается в недавно опубликованных обзорах [58, 59]. В двух монографиях [60, 61] применение метода рассмотрено глубже в связи с обычной дисперсионной спектроскопией. Основными достоинствами ИКФС для изучения температурных эффектов является быстрота, чувствительность и способ представления результатов. Вся средняя ИК-область (4000 — 400 см" ) может быть исследована, с такой же легкостью и затратами времени, как и узкая частотная область при использовании обычных дисперсионных приборов. Это преимущество становится очевидным, когда возникают трудности с термостабилизацией образца. Поэтому спектроскопистов больше не пугают затраты времени или тепловые флуктуации при исследовании всей средней ИК-области в разных температурных режимах [c.116]

    Преимущества Фурье-спектроскопии. Получение спектра интерферометрическим методом осуществляется в два этапа, в то время как при работе с монохроматором необходим всего один. Следовательно, рекомендация, предлагающая пользоваться интерферометром для измерения инфракрасных спектров, должна иметь-какие-то основания. Существует целый ряд соображений, обусловливающих превосходство интерферометра над дисперсионными спектрометрами два из них (выигрыш Фелжета и преимущество Жакино) являются основными и имеют глубокий физический смысл сущность же других достоинств интерферометра только начинает проясняться. [c.102]

    Как и в ИК Фурье-спектроскопии, основной причиной превосходства импульсных систем является преимущество мультиплексности. В спектрометре, выполняющем последовательное сканирова-вие спектра, в каждый момент измеряется лишь одна спектральная линия. Получаемое с помощью такого спектрометра отношение Сигнал/Шум зависит от интенсивности сигнала, времени, потраченного на его усреднение, и характерного для каждого спектра шума. Однако вследствие эффекта насыщения амплитуда сигнала ограничивается величиной, пропорциональной равновесной ядерной намагниченности, соответствующей рассматриваемой спектральной линии. Для спектра, содержащего Nr разрешаемых элементов, каждая линия регистрируется в течение только части полного времени сканирования, равной l/Nr. [c.138]

    Очень велики возможности изотопа ввиду широкого диапазона химических сдвигов, большей чувствительности к структурным изменениям и простых спектров. Из-за низкого содержания он редко соседствует с другим таким обазом, редко происходит расщепление линий за счет спин-спиновых взаимодействий с С помощыо получают информацию об окружении атомов углерода, дополняя сведения по протонам. К тому же нет необходимости в ВгО, которая может иногда оказывать влияние на структуру. Однако из-за низкого естественного содержания (1%) его очень трудно обнаруживать обычными средствами. Решению этой проблемы до некоторой степени содействовало применение фурье-спектроскопии ЯМР, но чувствительность метода все еще ниже, чем в случае протонов. Окончательное решение задачи повышения чувствительности дает развитие методов обогащения хотя наряду с очевидным преимуществом, которое дает обогащение, появляются трудности, связанные с расщеплением линий. Однако даже несмотря на остающуюся проблему низкой чувствительности, уже заметен вклад ЯМР- С в биохимию. [c.515]

    Еще больше возросло значение 0 ЯМР в анализе нефтяных компонентов с расширением возможностей импульсных программаторов, позволяющих получать практически любые импульсные последовательности. Так, импульсный метод управляемого спинового эха (GASPE) позволяет различать группы С, СН, СНа и СНз в сложной смеси органических соединений [31]. Метод является довольно простым и может быть использован в любом тине Фурье-спектрометра. Недостатком его является длительность анализа. Метод стимулированного переноса поляризации без искажений (DEPT) [32] используется в этих же це.лях и основан на различии длительности импульсов, соответствующих фрагментам С, СН, СНг, СНз. Анализ проводится достаточно быстро и позволяет различать четвертичные и третичные атомы углерода также и в ароматике. Т. е. при использовании указанного комплекса методик можно получать информативные данные как об ароматической, так и о насыщенной части средней молекулы. Кроме того, одно из преимуществ использования спектроскопии С ЯМР в исследовании сложных органических смесей состоит в том, что многие важные функциональные группы содержат атом углерода и поэтому непосредственно обнаруживаются в спектрах С ЯМР [33—35]. Разработан ряд методик [36], позволяющих получать дополнительную информацию о функциональных группах в нефтепродуктах с помощью спектроскопии ЯМР и Si. [c.61]

    Система, работающая в автономном режиме, обладает следующим преимуществом если ЭВМ выйдет из строя, то показания приборов все же могут быть зарегистрированы и позже обработаны. Эти системы являются идеальными, когда необходимо выполнять громоздкие вычисления, например обращение больших матриц регрессионную обработку данных масс-спектроскопии или фурье-преобразова-ния. Используя системы, работающие в автономном режиме, потребитель знакомится с методами работы на ЭВМ и при этом приобретает необходимый опыт для создания собственной автоматизированной системы. Возможность работы в автономном режиме является чрезвычайно ценной даже при обработке данных и управлении в реальном режиме времени, поскольку это обеспечивает дополнительные возможности в случае выхода ЭВМ из строя. Во многих случаях, например при высокоточной работе на газовом хроматографе, обработка данных в автономном режиме, как было найдено, дает большую точность и надежность в сравнении с работой мультиплексной системы в реальном режиме времени II1]. Усовершенствование конструкции мультиплексоров, возможно, позволит устранить эту аномалию в ближайшее время. Прогресс в данной области связывается с использованием БЭВМ со сложными программами на язы- [c.359]

    Наиболее разработаны в методическом отношении способы обнаружения синглетного кислорода в газовой фазе. Наличие в системе Ю2 можно зарегистрировать методом эмиссионной спектроскопии. Важным преимуществом этого метода является то, что он позволяет обнаружить и Е -состояния синглетного молекулярного кислорода в широком диапазоне давления, тогда как методом ЭПР можно определить А -состояние синглетного кислорода при давлениях в несколько мм рт. ст. Потенциалы ионизации молекул Ю2 в состояниях А и ниже, чем для основного состояния На этом базируется фотоионизацион-ный метод обнаружения возбужденного кислорода. Широкое распространение имеет метод активации реакций путем замены НдО тяжелой водой. Эффект связан с тем, что время жизни в Б О значительно больше, чем в Н О, и поэтому активность синглетного кислорода в 02 также значительно выше. Современная техника люминесцентных измерений позволяет наблюдать и исследовать инфракрасную люминесценцию синглетного кислорода практически в любых растворителях в ходе фотосенсибилизированных или темновых процессов. Однако регистрация образования синглетного кислорода прямыми методами осложняется из-за низкой его стационарной концентрации вследствие взаимодействия Ю2 с различными акцепторами и тушителями. Поэтому широкое распространение получили методы обнаружения синглетного кислорода, основанные на применении акцепторов и тушителей, способных эффективно и более или менее избирательно взаимодействовать с синглетным кислородом, приводя к его физической дезактивации или образованию специфических продуктов окисления. В качестве акцепторов Ю2 применяются алкены, производные фурана, ароматические углеводороды, холестерин в качестве тушителей — каротиноиды, азиды, амиды, а-то-коферол. Возможно самотушение синглетного ( А ) кислорода [c.136]


Смотреть страницы где упоминается термин Фурье-спектроскопия преимущества: [c.727]    [c.150]    [c.187]    [c.53]    [c.90]    [c.129]    [c.135]    [c.334]   
ЯМР в одном и двух измерениях (1990) -- [ c.122 ]




ПОИСК





Смотрите так же термины и статьи:

Фураи

Фурил

Фурье



© 2025 chem21.info Реклама на сайте