Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод четыреххлористый, окисление

    Опыт 3. Окисление иодид-иона бромом. К 3—4 каплям раствора иодида калия добавьте такой же объем бромной воды. В этом опыте следует избегать избытка бромной воды, чтобы иметь уверенность в том, что весь бром прореагировал с иодидом калия, в противном случае после встряхивания с бензолом или четыреххлористым углеродом избыток брома перейдет в слой органического растворителя вместе с образовавшимся иодом и окраска раствора будет нехарактерной. [c.132]


    Окисление иодид-ионов хлорной водой. Определение проводится так же, как определение бромид-ионов. Слой органического растворителя — четыреххлористого углерода или сероуглерода — окрашивается при этом в красно-фиолетовый цвет. Иод более, чем бром, чувствителен к избытку хлорной воды, которая окисляет его в бесцветную йодноватую кислоту, поэтому добавление хлорной воды следует вести строго по каплям. [c.155]

    Другой разновидностью окисленного лигнина является хлор-лигнин. Хлорирование гидролизного лигнина легко осуществляется уже при нормальной температуре растворами хлора в четыреххлористом углероде, хлорной водой и электрохимически с помощью соляной кислоты или хлористого натрия. Н. Н. Шорыгина предложила хлорировать лигнин, пропуская хлор в водную суспензию его или обрабатывая лигнин хлорной водой. При этом параллельно проходят замещение и окисление образующейся хлорноватистой кислотой, что подтверждается значительным уменьшением числа метоксильных групп и появлением карбоксильных. Подобный механизм возможен только в водной среде. Хлорирование сухого лигнина не сопровождается окислением. Замещения хлором проходят как в боковой цепи, так и в ароматическом ядре, однако в боковых цепях хлор весьма неустойчив. Кипячение хлорлигнина 1 ч с 5%-ной щелочью гидролизует продукт с выделением до 60% хлора. По разжижающей способности хлорлигнин менее эффективен, чем нитролигнин. Хлорлигнин неприменим в агрессивных средах и не отличается термостойкостью. Окисляя хлорлигнин, Н. Н. Шорыгина [c.155]

    Перечисленные растворители тяжелее воды и не смешиваются с ней. Растворимость воды в четыреххлористом углероде при 20°С —0,008% (масс.), в хлороформе — 0,065%, в дихлорэтане — 0,14%. Чистый товарный хлороформ всегда содержит до 1% (масс.) этилового спирта для защиты хлороформа от окисления. Для грубой сушки хлорпроизводных [c.57]

    По механизму протекания коррозионного разрушения различают химическую и электрохимическую коррозию. Химическая коррозия — окисление металла, не сопровождающееся возникновением электрического тока в системе. Такой механизм наблюдается при взаимодействии металлов с агрессивными газами при высокой температуре (газовая коррозия) и с органическими, жидкими неэлектролитами (коррозия в неэлектролитах толуоле, четыреххлористом углероде, бензине, нефти и т. д.). [c.223]


    Свойства пероксодисульфатов. 1. В пробирку с несколькими каплями иодида калия прибавьте столько же раствора пероксоднсульфата калия или аммония. Наблюдайте изменение окраски раствора. Что образуется в результате окисления иодида калия пероксодисульфатом калия Разделите содержимое пробирки на две части. К одной добавьте 1 мл бензола или четыреххлористого углерода и взболтайте. Раствору дайте отстояться до разделения органической и водной фаз. Что вы наблюдаете К другой части раствора прилейте раствор тиосульфата натрия до обесцвечивания раствора. Напишите уравнения реакций. [c.138]

    Объем исходного раствора 50 мл. Осмий удален отгонкой четырехокиси (опыты 12—16) или экстракцией четыреххлористым углеродом (опыты 5—6). Рутений отделен экстракцией четыреххлористым углеродом после окисления окисью серебра (II). [c.709]

    Окисление чистого и<-ксилола стало возможным после разработки способа выделения п-ксилола из смеси ароматических Сд-углеродов с помощью четыреххлористого углерода. В этом методе чистый jn-ксилол получают как побочный продукт. Изофталевая кислота, получающаяся при окислении л-ксилола, является новым для химической промышленности продуктом, который будет, по-видимому, потребляться для производства синтетических смол и пластификаторов. [c.256]

    Сушествование и роль ММВ с участием протона в нефтяных системах доказаны экспериментально [23,29,69,75,141,143,154...157]. Так, в асфальтенах природных битумов и нефтей значительная часть кислорода входит в состав ОН-групп, почти полностью участвующих в образовании комплексов с Н-связью и не исчезающих даже при очень больших разбавлениях четыреххлористым углеродом [70,75,141,157]. Интенсивность Н-связей возрастает с увеличением содержания кислорода во фракциях асфальтенов или с ростом их полярности [141]. Аналогично ведут себя и КН-группы. Многие гетероорганические соединения битума, в частности, содержащие кетонные, хинонные, карбоксильные и циклические амидные группы, ведут себя как Н-акцепторные основания и активно участвуют в образовании Н-связи [141,157]. Асфальтены и их групповые компоненты при взаимодействии с фенолом и двухатомными спиртами проявляют свойства Н-акцепторных оснований и образуют Н-связи с энтальпией 23-24 кДж-моль- [141,154] не исключается образование и более слабых Н-связей. Концентрация Н-акцепторных оснований в асфальтах не менее 2 ммоль-г а окисление воздухом при повышенных температурах вызывает увеличение их Н-акцепторной основности [154]. Метилирование, ацетилирование и другие реакции связывания активного водорода значительно увеличивают Н-акцепторную основность асфальта, что указывает на то, что в асфальте Н-кислоты и Н-основания находятся в Н-связанном состоянии [141,143,154]. Не исключается возможность образования внутримолекулярных Н-связей [141,143,155]. [c.66]

    Оба смешанных ангидрида очень чувствительны к влаге, чем в некоторой степени затрудняется работа с ними. Однако преимущества этих реагентов заключаются в их энергичном нитрующем действии, в их неспособности производить окисление и возможности проведения реакции в неводных средах (чаще всего нитрование ими проводят в четыреххлористом углероде или уксусном ангидриде). [c.12]

    Видно, что при окислении можно получать битум с более высокой температурой размягчения (63 °С), кре-кинг-остаток почти полностью растворим в сероуглероде и четыреххлористом углероде, растяжимость обоих крекинг-остатков сравнительно низкая. При использовании одного и того же сырья с повышением давления ири термическом крекинге содержание асфальтенов в крекинг-остатке повышается. При высоких температуре и давлении термического крекинга остатки обладают следующими особенностями. [c.260]

    Индикатором в этом случае служит хлороформ или четыреххлористый углерод. Окисление протекает в две стадии сначала выделяется свободный иод [c.179]

    Делигнификация хлором. По этому методу растительную ткань подвергали двукратному хлорированию с последующей экстракцией хлорированного лигнина раствором пиридина в спирте [1, 2]. Позднее было найдено, что более эффективна экстракция хлорированного лигнина 3%-ным раствором аминоэтанола в этаноле [3]. Вместо этанола можно применять диоксан, в котором окисленный лигнин растворяется лучше, чем в этаноле [4]. Во избежание повышения температуры во время хлорирования растительной ткани рекомендуется вести этот процесс в водном растворе [5] или в четыреххлористом углероде [6]. [c.24]

    Показано, что н-алкилгипохлориты в четыреххлористом углероде или бензоле являются эффективными окислителями органических сульфидов до сульфоксидов и суль-фонов. Установлено, что селективность образования сульфоксидов определяется мольным соотношением исходных реагентов. Установлена связь строения органических сульфидов с их реакционной способностью. Показано, что избирательность алкилгипохлоритов в реакции окисления органических сульфидов возрастает с увеличением длины и разветвленности алкильного заместителя алкилгипохлорита. [c.4]


    Аноды современных отечественных диафрагменных электролизеров пропитывают 15%-ным раствором льняного масла в четыреххлористом углероде или раствором таловой олифы в четыреххлористом углероде. После дальнейшей обработки — хлорирования и окисления масло переходит в твердые продукты, обволакивающие пленками часть внутренней поверхности пор. [c.58]

    Влияние танацехола на индуцированное четыреххлористым углеродом перекисное окисление линидов (ПОЛ) в печени крыс (М+т, п=10) [c.345]

    При получении монокарбоксилцеллюлозы окисление целлюлозы может быть осуществлено действием на нее газообразной двуокиси азота (N02), жидкого азотноватого ангидрида (N204) или раствора азотноватого ангидрида в индифферентном органическом растворителе (обычно в четыреххлористом углероде). Степень окисления целлюлозы, т. е. количество окисленных спиртовых групп, зависит от длительности окисления, температуры и количества двуокиси азота. Максимальное содержание карбоксильных групп в монокарбоксилцеллюлозе составляет 25 вес.%, что соответствует окислению всех первичных спиртовых групп. [c.209]

    Разделение сырых жирных кислот изо- и нормального строения, полученных окислением парафинов, осуществлено Н. К. Маньковской [306]. Условия разделения 15%-ный раствор карбамида в 96%-ном этаноле и 20%-ный раствор кислот в том ж спирте или в сухом четыреххлористом углероде смепшвали в соотношении 10 1, интенсивно перемешивали 2—3 мин и оставляли кристаллизоваться в течение 2 ч при 20—22° С. Установлено, что в этих условиях низкомолекулярные жирные кислоты нормального строения, содержащие до 12 атомов углерода в молекуле, и все изокислоты не образуют кристаллического комплекса с карба- [c.219]

    Несколько иначе взаимодействует с каучуком перекись водорода. При продолжительном встряхивании разбавленной перекиси (3%) с 4%-ным раствором натурального каучука в четыреххлористом углероде происходит окисление каучука, причем продукты окисления составляют две фракции. Одна из них растворима в воде, другая—в четыреххлористом углероде и частично в эфире. Метанол высаживает из эфирной вытяжки продукт состава С25Н40О, тогда как фракция, растворимая в четыреххлористом углероде и нерастворимая в эфире , имеет состав С15Н24О. [c.111]

    Окисление целлюлозы может быть осуществлено действием на нее газообразной двуокиси азота (НОг), жидкого азотноватого ангидрида (N204) или действием раствора азотноватого ангидрида в индифферентном органическом растворителе (обычно в четыреххлористом углероде). Степень окисления целлюлозы, т. е. количество окисленных первичных спиртовых групп, зависит от длительности окисления, температуры и количества двуокиси азота. Изменяя эти условия, можно регулировать степень окисления целлюлозы. Максимальное содержание карбоксильных групп в целлюлозе составляет 25% по весу, что отвечает окислению всех первичных спиртовых групп, т. е. введению одной карбоксильной группы в каждое элементарное звено макромолекулы. [c.285]

    При помош,и процессов конверсии кислородом или водяным паром из метана получают синтез-газ (СО На) — прекрасное сырье для дальнейшего органического синтеза, а также чистую окись углерода, водород и синтез-газ (2На а) для производства аммиака, являюш,егося исходным сырьем для выработки удобрений. Неполным окислением метана при низких температурах могут быть получены формальдегид, метанол, ацетальде-гид. При хлорировании лгетана в промышленных условиях образуются хлористый метил, хлористый ыетплен, хлороформ и четыреххлористый углерод. Нитрованием метана получают нитрометан. [c.15]

    Сульфирование, как и хлорирование, асфальтенов изучается сравнительно давно. В нашей стране обстоятельные исследования выполнил Антонишин. Им определены оптимальные условия процесса (расход 20%-ного олеума — 4 г/г сырья, 100°С, продолжительность сульфирования 2 ч) с це/ ью получения ионообменных материалов. Реакции сульфирования сопровождаются процессами деструктивного окисления боковых алкильных цепей и алициклических фрагментов с образованием карбоксильных и фенольных групп. С понижением концентрации серной кислоты протекает преимущественно реакция окисления. В растворе четыреххлористого углерода происходит также до идрпровапие алипиклических колец до ароматических и окислительная конденсация сульфопро-дуктов. [c.216]

    Гентизиновую кислоту можно получить нагреванием гидрохинона при 130° с бикарбонатом калия в водном растворе кипячением гидрохинона с четыреххлористым углеродом, 50%-ным NaOH и небольшим количеством порошка меди окислением салициловой кислоты персульфатом калия ", а также сплавлением гентизина со щелочами , или гидролизом 6-окси-З-ацетил-2-метил хромона едким натром . [c.333]

    Дитизон, 0,02%-ный раствор в четыреххлористом углероде (запасный). Навеску дитизона 0,020 г помещают в делительную воронку емкостью 500 мл и растворяют в 50 мл четыреххлористого углерода дитизон, растворяясь, окрашивает раствор в зеленый цвет. Г о растворении дитизона добавляют в воронку 100 мл аммиака (1 100) и воронку энергично встряхивают при этом дитизои переходит в аммиачный раствор, окрашивая его в оранжевый цвет, а продукты окисления дитизона остаются в слое органического растворителя. Последний сливают, в воронку добавляют 100 мл чнст010 четыреххлористого углерода, подкисляют аммиачный раствор несколькими каплями разбавленной серной кислоты (1 1) и при перемешивании переводят дитизон обратно в четыреххлористый углерод. Отделив раствор дитизона от водного слоя, дважды промывают его водой встряхиванием в делительной воронке, а затем фильтруют (для просушки) через бумажный фильтр и хранят в склянке из темного стекла, под слоем 2 и. серной кислоты. [c.221]

    При концеитрироваиии экстрагированием в качестве экстра ен-та выбирают растворитель, хорошо растворяющий извлекаемое из водной среды вещество. Кроме того, объем экстрагента обычно берут меньше объема водной фазы. Например, при обнаружении иодид-иоиов окислением до элементного иода последний экстрагируют несколькими каплями хлороформа, четыреххлористого углерода или бензола. Получают интенсивно окрашенный экстрзг<т, в котором концентрация иода значительно выше, чем в водной фазе. [c.18]

    В промышленность внедряются различн].те методы химической переработки метана и его производных (рис. 101). Наиболее перспективны процессы окисления метана с образованием формальдегида и метилового спирта — метанола. Первый продукт используется для получения фенолформальдейидных пластиков. Метиловый спирт является хорошим растворителем, антифризом, а также сырьем для дальнейшей химической переработки. Важным продуктом для производства таких кремнийорганических соединений, как силикон и бутилкаучук, является хлористый метил. Хлороформ используется как растворитель и анестезирующее средство. Из четыреххлористого углерода получаются высокоэффективные хладагенты. Нитрометан применяется для приготовления различных лаков. [c.210]

    Бензофенон может быть получен перегонкой кальциевой соли бензойной кислоты действием хлористого бензоила на бензол в присутствии хлористого алюминия действием фосгена на бензол в присутствии хлористого алюминия действием четыреххлористого углерода на бензол в присутствии хлористого алюминия с последующим гидролизом, действием хлористого алюминия на смесь ангидрида бензойной кислоты и уксусного ангидрида в бензольном растворе нагреванием о-бензоилбензойной кислоты с небольшим количеством медной соли , окислением дифенилметана азотной кислотой в присутствии ацетата свинца и действием фенилмагнийхлорида на хлористый бензоил . [c.101]

    Более высокие выходы альдегидов можно получить при окислении первичных спиртов г/ ег-бутилхроматом (в петролейном эфире, бензоле или четыреххлористом углероде) или двуокисью марганца (в ацетоне, петролейном эфире, четыреххлористом углероде или разбавленной серной кислоте). Эти реагенты позволяют с хорошими выходами получать также ненасыщенные и ароматические альдегиды. [c.20]

    При помощи инфракрасной спектроскопии и аналитических методов можно определять структурные характеристики молекул, содержащихся во всех фракциях битумов, в частности в асфальтеновых, с расшифровкой типа конденсации, длины алифатических цепей, ароматичности и полярности> ИК-спектроскопию применяют также для изучения порфиринов ванадия и никеля, содержащихся в нефтях и битумах, для исследования кислородсодержащих функциональных групп в окисленных битумах. Таким методом показано, что омыляемые вещества битума содержат главным образом эфирные группы и что почти полностью отсутствуют ангидриды и лактоны. Методом селективного поглощения фракций показано различие химического состава битумов, полученных из разного сырья, а также изменение их строения по мере углубления окисления сырья. Растворы в четыреххлористом углероде или сероуглероде компонентов окисленных битумов (типов гель, золь — гель и золь), полученных разделением с использованием бута-нола-1 и ацетона и подвергнутых инфракрасному исследованию в области спектра 2,5—15 мк мкм) с призмой из хлористого натрия, показали, что в сильнодисперги-руемых битумах типа золь самое высокое содержание ароматических колец в каждом компоненте [480], Количество групп СНз почти одинаково в алифатических и циклических соединениях. Метиленовых групп парафиновых цепей значительно больше содержится в соединениях насыщенного ряда. Как правило, их число уменьшается при переходе битума от типа гель к типам золь — гель и золь. [c.22]

    Растворимость битумов в таких органических растворителях, как хлороформ, бензол, сероуглерод и четыреххлористый углерод, характеризует наличие примесей — минеральных и других твердых веществ (например, карбенов и карбоидов). В этих растворителях товарные окисленные нефтяные битумы растворяются более, чем на 99%- Растворимость природных битумов в сероуглероде сравнительно невелика например, три-нидадский битум растворяется в нем всего лишь на 54— [c.81]

    Возбужденная молекула кислородна может вернуться в осиозте триплетное состояние, если она не встретит подходящий для реакции олефин. Было показано, что скорость этого процесса сильно заоисит от природы растворителя [132]. Измеренные времена жизни варьируют от примерно 700 мкс (в четыреххлористом углероде) до 2 мкс (в воде). Из зтого следует, что растворитель может оказывать четко выраженное влияиие на эффективность окисления чем больше время жизни молекулы кислорода в возбужденном состоянии, тем более вероятна продуктивная встреча ее с алкеповьш субстратом. [c.337]

    В литературе описан обмен с высокими выходами многих алкил- и арил-бромидов, который обычно проходит за несколько десятков минут. Источниками радиоизотопов чаще всего служат элементарный бром Вг , А1ВГз , НВг , ЫВг , SпBrf. Радиобром поставляется в форме щелочных бромидов при их подкислении можно получить свободную кислоту. Бромистый алюминий приготовляют действием паров брома на избыток алюминиевых опилок при 450° его выделяют и очищают возгонкой [27]. Окислением бромидов, например смесью двуокиси марганца и серной кислоты, получают элементарный радиобром [28]. Бромистый литий получают при добавлении НВг в разбавленный раствор гидроокиси лития [29]. В качестве растворителей применяли сероуглерод, четыреххлористый углерод, бромбензол, нитробензол, ацетон, диэтиленгликоль и этанол. Продукт обычно выделяют путем вакуумной перегонки или экстракции. [c.688]


Смотреть страницы где упоминается термин Углерод четыреххлористый, окисление: [c.66]    [c.128]    [c.148]    [c.261]    [c.465]    [c.68]    [c.74]    [c.341]    [c.89]    [c.345]    [c.18]    [c.340]   
Методы разложения в аналитической химии (1984) -- [ c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Углерод четыреххлористый

Четыреххлористый



© 2025 chem21.info Реклама на сайте