Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полидисперсность определение

    При использовании для исследования МВР олигомеров гель-проникающей хроматографии наличие дефектных молекул приводит к неоднозначной зависимости среднеквадратичного расстояния между концами цепи от молекулярного веса и, как правило, к несколько более высокой кажущейся эффективности разделения. Присутствие же в олигомере низкомолекулярных циклических молекул обусловливает завышенное значение коэффициентов полидисперсности, определенных из данных ГПХ. [c.223]


    Результаты определения с помощью номограмм (см. рис.4)даны в таблице. Там же приведены значения полидисперсности,определен-.ные методом ГПХ, светорассеяния и осмометрии. [c.42]

    Однако, так как возможно, что растущая цепь на любой стадии может скорее оборваться, чем присоединить следующую мономерную единицу, то уравнения (15) дают лишь средние значения. В любой реально идущей реакции полимеризации образуются полимеры различного молекулярного веса. Ожидаемая форма функции распределения по молекулярным весам люжет быть вычислена как для диспропорционирования, так и для соединения опыты по разделению полимеров но молекулярным весам дают хорошее совпадение с ожидаемыми результатами. Имеются методы определения молекулярных весов полимеров, включающие измерение таких общих свойств, как осмотическое давление, рассеяние света (мутность) и вязкость растворов. Поскольку осмотическое давление полидисперсной системы (системы с распределением по молекулярным весам) дает обычный или численно средний молекулярный вес, а рассеяние света — средний вес, определяемые соответственно как [c.123]

    Хорошо известно, что практически все синтетические и природные эластомеры полидисперсны с точки зрения молекулярной массы, т. е. представляют собой смесь макромолекул различной молекулярной массы. Поэтому величины молекулярной массы, приводимые для того или иного эластомера, всегда представляют собой некоторые средние значения, причем характер усреднения зависит от метода, использованного при их определении. [c.21]

    Распределение звеньев в цепях сополимера характеризуют различными параметрами в зависимости от задачи исследования. Во многих случаях удобным оказалось использовать, так называемое блоковое число , определяемое как среднее число блоков, приходящееся на каждые 100 мономерных звеньев [24]. Эта величина находится в простой связи с параметрами, используемыми в теории сополимеризации, и рядом структурных характеристик цепи, например долей связей данного типа. В других случаях более наглядной представляется характеристика распределения звеньев в цепях долей звеньев данного сорта, содержащихся в последовательностях определенной длины. Для блоксополимеров полезной Характеристикой является коэффициент полидисперсности для каждого компонента, который, очевидно, непосредственно связан с распределением по длине и числу блоков. [c.27]


    Для цис-полибутадиеновых каучуков было найдено а =1,60, Ь = 0,45 для аморфных сополимеров этилена с пропиленом — 60% (мол.) этилена о = 1,63, Ь = 0,38 [26]. Аналогичные уравнения получены для растворных бутадиен-стирольных каучуков [27] Из уравнения (1) следует, что ввиду слабой зависимости вяз кости по Муни, определенной при 100 °С, от полидисперсности полимеры с различным ММР и технологическими свойствами в частных случаях, могут иметь близкие (или даже равные) зна чения вязкости по Муни. [c.81]

    Коэффициент полидисперсности (М /Мп), характеризующий ММР полимеров, определяет реологическое поведение полибутадиенов при высоких напряжениях сдвига [89]. Из зависимости, приведенной на рис. 9, следует, что коэффициент полидисперсности может быть найден на основании определения вязкости по Муни при 20 °С [c.196]

    В идеальной системе при скорости начала псевдоожижения U f слой мгновенно переходит из неподвижного состояния в псев-доожиженное. На практике же существует большая переходная область псевдоожижения, поэтому скорость начала псевдоожижения не имеет фиксированного значения. Проблема определения скорости начала псевдоожижения наиболее сложна при большой полидисперсности смеси твердых частиц .  [c.43]

    Содержание частиц с эквивалентными диаметрами в размерном интервале от 2 до йз определяется по величине отрезка, отсекаемого на оси ординат аа касательными к кривой, проведенными в точках, соответствующих временя оседания частиц этой размерности. Время оседания частиц разных раз.меров устанавливается расчетом. Отрезок ординаты от начала координат до предела оседания принимается за 100% и к нему относится величина отрезков, полученных на оси ординат между касательными. На пологой части кривой, где касание практически происходит, а некотором участке кривой оседания, за точку касания принимается точка отрыва касательной от кривой расположенная справа (фиг. 15, точка 2). Этот прием объясняется принципом графического определения фракционного состава полидисперсных взвесей с непр е-рывной размерностью частиц, в основу которого кладется способ анализа -взвесей из ограниченного числа монодисперсных фракций [20]. Минимальный размер частиц определяется по времени достижения кривой предела оседания. [c.46]

    Отмечено [356] расхождение между результатами определения удельного сопротивления осадка на лабораторной воронке, где фильтрат движется в направлении сверху вниз, и данными о работе барабанного вакуум-фильтра, в котором фильтрат перемещается в направлении снизу вверх. Такое расхождение объяснено различным влиянием свободного оседания и сегрегации полидисперсных частиц суспензии на удельное сопротивление осадка, получаемого на воронке и в упомянутом фильтре. На воронке направления силы тяжести и движения фильтрата совпадают и в образовании осадка участвуют все частицы суспензии. В фильтре указан- [c.336]

    Глобулы их представляют деформированные шары с плотной упаковкой, они не способны к седиментации и характеризуются структурномеханическими свойствами, похожими на свойства гелей. К эмульсиям такого вида относятся, например, консистентные смазки и др. Для определения дисперсности высококонцентрированных полидисперсных эмульсий В. М. Мартынов предложил уравнение [17] [c.21]

    По полученным данным строят седиментационную кривую накопления осадка за определенное время. Чаще всего для полидисперсных систем это плавные кривые, близкие к параболам (рис. 9). [c.26]

    Пределы существования взвешенного слоя,-определенные по формуле (1.32), для монодисперсных сферических частиц катализатора соответствуют увеличению линейной скорости газа от до Wy в 10— 15 раз, поэтому при обычных рабочих скоростях ш = (1,5 3) w при отсутствии фонтанов из слоя уносятся лишь пылинки, получившиеся при истирании зерен, тогда как для процессов обжига характерен унос более мелких зерен, составляющих по весу свыше 50% обжигаемого материала. Обычно при обжиге полидисперсных материалов численное значение для крупных частиц бывает больше, чем Wy для наиболее мелких, т. е. унос частиц неизбежен и приходится устанавливать многосекционные пылеуловители, тогда как в каталитических процессах с высокопрочным катализатором возможна работа без пылеуловителей. [c.105]

    Определение параметров транспортирования полидисперсного материала. Запишем уравнения движения для п фракций дисперсной фазы для установившегося процесса  [c.52]

    Таким образом, наличие устойчивого обводнения топлива объясняется образованием высокодисперсных коллоидных систем (обратных эмульсий). Как правило, водно-топливные эмульсии, образующиеся в промышленных условиях, гетерогенны и полидисперсны, обладают определенной агрегативной и кинетической устойчивостью (размер частиц фазы меняется в широком диапазоне от 0,15 до 225 мкм и более, а время полного разделения эмульсии от 15 мин до более 12 ч).  [c.20]


    Сначала капля под действием кинетической энергии сплошной среда вытягивается в цилиндр. Растяжение капли сопровождается увеличением ее поверхности с соответствующим повышением запаса поверхностной энергии. Капля становится неустойчивой и при достижении определенного соотношения между диаметром и длиной (по теории капиллярности при I > 3,14d п) распадается на две (иногда и больше, с образованием очень мелких капель)-капли меньших диаметров. Диаметры образующихся капель-всегда отличаются друг от друга, так как при образовании капель одинаковых размеров их поверхность будет наибольшей по отношению к поверхности цилиндра, т. е. имеет место самый неблагоприятный с энергетической точки зрения случай деления. В этом заключается одна из причин полидисперсности получаемых эмульсий. [c.59]

    Обидим для каталитических процессов на поверхности твердых катализаторов является нагрев сырья (бензиновых, дизельных, вакуумных дистиллятов, мазутов) до соответствующих температур ири определенном давлении, контакт с поверхностью катализатора (обычно в реакторах), разделение продуктов реакции и регенерация катализатора (в регенераторах). При нагреве нефтяного сырья в змеевиках печи формируется ССЕ различной степени полидисперсности и продолжительности жизни. Под продолжительностью жизни ССЕ понимается период от начала возникновения ССЕ в исходной фазе до ее разрушения с формированием новой фазы. Продолжительность жизни зависит от природы и размера ядра (г) и толщины и природы адсорбционно-сольватного слоя (/г) ССЕ, от внешних воздействий на систему и может изменяться в широких пределах. Продолжительность жизни при фазовом переходе наименьшая для бензиновых фракций и увеличивается ио мере перехода к сырью с высокими значениями си.т межмолекулярного взаимодействия (наиример, к мазуту). [c.202]

    Число повторяющихся звеньев в макромолекуле называют степенью полимеризации. Любой реальный синтетический полимер состоит из макромолекул разной стеиени полимеризации и характеризуется определенной полидисперсностью (полимолекулярно-стью) и функцией распределения макромолекул по размерам (степеням полимеризации). [c.306]

    В большинстве теорий об эмульсиях требуется определение размера шариков (если эмульсии монодиснерсные) или распределение их по размерам (в случае полидисперсных эмульсий). Эти данные нужны для объяснения, наиример, реологических свойств, для оценки стабильности эмульсии и эффективности процесса гомогенизации. [c.144]

    Средневзвешенная молекулярная масса может быть вычислена из данных, полученных при исследовании гидродинамических свойств разбавленных растворов полимеров (вискозиметрия, диффузия, ультрацентрифугирование), а также их оптических свойств (светорассеяние). Для молекулярных масс, определенных гидродинамическими методами, характерна существенная зависимость полученных значений Му, от степени полидисперсности высокомолекулярного соединения и от применяемого растворителя. Отсюда возникает возможность оценки полидисперсности по результатам изучения гидродинамических свойств в различных растворителях. Применение гидродинамических способов определения Му, требует предварительной калибровки по молекулярным массам. Метод светорассеяния является абсолютным. [c.31]

    В зависимости от способа определения средние молекулярные массы полидисперсных образцов полимеров имеют различные значения (рис. 1.20). [c.55]

    Вопрос. Чем объясняются различия в значениях средних молекулярных масс полидисперсных образцов полимеров при определении их различными методами  [c.55]

    ПОЛИДИСПЕРСНОСТЬ ПОЛИМЕРОВ И МЕТОДЫ ОПРЕДЕЛЕНИЯ МОЛЕКУЛЯРНОГО ВЕСА [c.73]

    На рис. 38 представлен типичный график результатов фракционирования полидисперсного полимера. Количестпо фракций в данном случае составляет 20 вес каждой фракции соответствует определенному отрезку на оси ординат. [c.76]

    С другой стороны характер полидисперсности, наряду со средним значением М, оказывает принципиальное влияние на свойства полимеров. Поэтому определение параметров молекулярномассового распределения (ММР) является одной из первостепен-ных задач структурной характеристики полимеров, необходимой как при изучении механизма полимеризации, так и при установлении связи структуры со свойствами. [c.21]

    Хладотекучесть СКД (см. табл. 3) ниже, чем у СКДЛ, что связано с некоторой, хотя и очень небольшой, его разветвленностью. Установлено также [68], что хладотекучесть СКД уменьшается с увеличением коэффициента полидисперсности (при той же средней М). При сопоставлении каучуков СКД с узким и широким ММР обнаруживается инверсия текучести при переходе от малых напряжений сдвига (хладотекучесть) к высоким (вальцуемость). Полимеры с широким ММР обладают за счет высокомолекулярных фракций определенной каркасностью , которая препятствует течению при малых напряжениях сдвига. В то же время присутствующие в них низкомолекулярные фракции являются своеобразным пластификатором, облегчающим течение при высоких напряжениях сдвига. Подобная инверсия была подтверждена экспериментально [68] при исследовании текучести каучуков с различным ММР (рис. 3). [c.190]

    По технологическим свойствам СКД-2 и СКД-3 обладают существенным преимуществом по сравнению с СКД и главным -0б 10м СКДЛ. Определенную роль в этом играет их более широкое ММР (см. табл. 3), однако и при равной полидисперсности сравниваемых каучуков указанное различие в вальцуемости резиновых смесей сохраняется. Причиной этому оказалась заметная склонность СКД-2 и СКД-3 к деструкции при обработке на холодных (25—30°С) вальцах (рис. 5). [c.193]

    При разделении полидисперсных суспензий удельное сопротивление осадка определяется, в частности, седиментацией и миграцией частиц, вследствие чего оно зависит от времени [100]]. Влияние этих, а также других микрофакторов на удельное сопротивление осадка не удается выразить в виде эмпирических зависимостей, непосредственно пригодных для математического описания процесса. Влияние их следует учитывать путем надлежащего определения удельного сопротивления осадка как макрофактора постоянного значения в виде функции Га = Го х). Тогда может быть составлено математическое описание, включающее только макрофакторы. [c.79]

    Точно определить значение величины В нока не представляете возможным из-за полидисперсности пыли. Поэтому уравнение (IV.11) может быть использовано только для оценки влияния параметров входящих в число 81кт, на эффективность очистки т]п путем определения показателя степени к (см. далее). [c.167]

    При фазообразовании, вследствие неоднородности полей, в исходной фазе обычно получаются как первичные, так и вторичные ССЕ различных размеров, различной степени дисперсности, т. е. образуется ряд иолидисперсных ССЕ, поведение которых существенно отличается от монодисперсных. Полидисперсность ССЕ удобно характеризовать кривыми распределения, наглядно показывающими долю частиц ф определенного размера (рис, 15). [c.81]

    Как правило, дисперсные системы не монодиснерсны. Частицы распределены но размера.м по определенному закону. Если известны дополнительные сведения о структуре частиц дисперсной фазы (например, поверхностное натяжение на границе раздела фаз), то формула Левпшна — Перрена может применяться для определения оставшихся неизвестных параметров. Обобщение формулы Левшнпа — Перрена для полидисперсных систем приведено в [138]. Преимуществом метода поляризованной люминесценции является то, что о)1 позволяет наблюдать начальную стадию ассоцпации молекул и образования дисперсий. Однако он не работает, если частицы достаточно велики. Кроме того, метод селективен к природе молекул, поскольку каждое вещество обладает своим спектром люминесценции. Верхняя граница определения размеров составляет 10 нм. [c.98]

    Принцип действия реагентов с позиций физико-химической технологии нефти заключается в подаче в породы-коллекторы дисперсных систем со строго определенными размерами полидисперсных частиц (иен, микроэмульсий, технического углерода), что влняет иа перераспределение потоков между порами различных размеров и изменение гидродинамики флюидов и обеспечивает таким образом увеличение коэффициента охвата и соответственно нефтеотдачи пласта. Реагенты могут влиять не только на коэффициент охвата, но и на коэффициент вытеснения флюидов из пор. [c.192]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    К другим типам усреднения приводят методы исследования гидродинамических свойств растворов асфальтенов и соответствующие им срёдние молекулярные массы навываются среднегидродинамическими М г). Их определяют по вязкости растворов, константе седиментации или коэффициенту диффузии. Средние молекулярные массы, полученные различными методами, различаются между собой в тем большей степени, чем шире молекулярно-массовое распределение полимера По относительному значению они располагаются в ряд М < Мш < Мг. Для различных асфальтенов установлена- высокая полидисперсность [306]- Так, для ряда асфальтенов, выделенных из битумов деасфальтизации, значение Мя (определенное криоскопически в бензоле), равно 2200, а Mw, определенная по скорости диффузии в бензольном растворе, составляет 8540. Отношение M lMn — 3,5 указывает на высокую степень полидисперсности асфальтенов. [c.152]

    Вискозиметрический к<етод определения молекулярных масс, простой в экспериментальном исполнении, не является абсолютным, так как для каждой системы растворенное, вещество — растворитель при определенной температуре, необходимо определять значение коэффициентов и а в уравнении Штаудингера [т)] = КМ . Применение констант, найденных для одной системы, к, другой дает искаженные результаты. Например, применение константы К, найденной для системы-асфальтены — бензол, к системе асфальтены — мальтены (того же Атабасского месторождения) позволило установить значение молекулярной массы 17000— 60000 [3051. При применении коэффициентов, найденных для масел и смол тех нефтепродуктов, из которых выделялись асфальтены, к системе асфал тены — бензол (содержание 1,61—3,08 %, 25 °С) были получены заниженные значения — 1120—1600. Этот метод используют в практике макромолекулярной химии, а в данном случае необходимо помнить, что отличие асфальтенов от синтетических полимеров состоит в полидисперсности не только по размеру молекул, но и по химическому составу. [c.153]

    Из приведенного сравнения видно, что отличительные признаки смол заключаются в растворимости в алканах (а также в углеводородах нефтн), возможности разделения на узкие фракции однотипных групп веществ (например, моноциклические, бициклические и др.), малая степень ароматичности, поЛидисперсность и отсутствие структуры. Смолы представляют собой вещества, занимающие область между углеводородными маслами и асфаль-тенами. Именно благодаря полидисперсности, широкому интервалу молекулярных масс, отсутствию относительно сформированной молекулы,, небольшому размеру и малой степени ароматичности, межмолекулярные взаимодействия у них не приобретают решающего значения. Поэтому их можно разделить на фракции одноптипиых веществ. Вследствие этого в книге [242] предложены критерии, позволяющие более четко определить понятое асфальтены и смолы. К смолам можно отнести растворимые в углеводородах нефти высокомолекулярные гетероатомные полидисперсные бесструктурные соединения нефти, которые можно разделить на узкие фракции однотипных соединений. Начиная с определенного размера и степени ароматичности относительно сформированных полициклических молекул, решающим фактором становится меж-молекулярное взаимодействие, приводящее к формированию структуры (в известной степени сравнимой с процессом кристаллизации у полимеров), степень упорядоченности которой зависит от их химической природы. [c.269]

    Типичная кривая седиментации реальной полидисперсной системы представлена иа рис. IV. 1о. Эту кривую можно представить как ломаную линию, отвечающую бесконечно большому числу фракций. Кривая седиментации, представленная на рис. IV. 1 в разделена на четыре участка, соответствующих выбранным временам полного осаждения фракций (т н, то, Тмакс)- Такое разделение кривой лучше проводить после предварительного определения времени осаждения самой крупной и самой мелкой фракций. Полному осаладению самой крупной фракции отвечает Тмин. Время осаждения самой мелкой фракции соответствует времени окончания накопления осадка Тыакс В точках кривой, отвечающих моментам окончания осаждения фракций (В, С, О, Е) проводят касательные до пересечения с осью ординат, на которой получают отрезки, соответствующие массам фракции частиц. Зная высоту столба суспензии и время полного осаждения фракций, можно по формуле (IV. 20) определить скорость осаждения и по формулам (1 .8) или (IV. 22) рассчитать радиус частиц каждой фракции. Очевидно, что применительно к полидисперсным системам этот радиус является граничным для соседних фракций, а средний радиус фракции тем ближе отражает истинное значение, чем на большее число фракций разделена полидисперсная система. [c.197]

    Одним из способов уменьшения критической высоты сепарационного пространства является установка над псевдоожиженным слоем стабилизирующей решетки [41]. Для практических целей наиболее подходящий из существующих методик расчета уноса мелкодисперсного материала полидисперсного состава из псевдоожиженного слоя, по нашему мнению, является методика Зенца — Уайля [39]. Она базируется на определении количественного выноса отдельных фракций из полидисперсного слоя. [c.176]

    Твердая фаза (катализаторы), используемая в процессе каталитического крекинга, является полидисперсной, что усложняет гидродинамический режим газокатализаторного потока п влияет на изменение скоростей отдельных фракций сыпучего материала [60]. При увеличении концентрации влияние полидисперсности становится менее заметным. Для концентрации твердой фазы, превышающей определенную величину, частота соударений частиц и их ударов о стенки трубопровода снижается, так как вдоль стенок трубы начинает двигаться поток сыпучего материала, где радиальное перемещение отдельных твердых частиц ограничено. При этом наблюдается значительная неравномерность средних концентраций твердой фазы не только в различных точках матерналопрово-да, но и в определенном месте [55, 73]. В сплу особенностей транспорта материала полидисперсного состава в газокатализа-торном потоке образуются местные повышения илл, наоборот, понижения концентрации твердых частиц, изменяющие концентрационное поле. Образующиеся локальные неравномерности имеют случайный характер и зависят от скорости газа и полидисперсности твердой фазы [74]. При этом сохраняются условия образования концентрационных полей с определенной конфигурацией профиля твердой фазы. [c.184]

    Седиментационные кривые, устанавливающие зависимости между массой выпавшего осадка Р и временем осаждения т, позволяют получать данные для характеристики полидисперсности нефтей о размерах частиц и количестве осадка, образующегося за определенное время осаждения. Такие зависимости для ромашкинской нефти представлены на рис. 1.8 /33/. [c.56]

    Отсутствие общего метода определения молекулярных масс во всем практически реализуемом диапазоне и влияние на эту величину полидисперсности обу ловливает необходимость применения для этой цели различных экспериментальных способов их оценки. [c.19]

    Изнашивание плунжерной пары насоса при введении в топливо абразивной пыли определенных фракций происходит с понижающей скоростью, и с какого-то момента по времени или по количеству гюдведешюго аб()азива износ и зазор в паре стабилизируются на определенном уровне, причем тем большем, чем крупнее размер частиц абразива. При этом максимальный зазор, как правило, равен м ж-симальному размеру частиц абразива. То же самое имеет место и при стендовых испытаниях с полидисперсным абразиюм или в эксплуатации. [c.27]

    Для полидисперсных полимеров значения среднечислового и средневесового молекулярных весов не могут быть идентичны— средневесовой молекулярный вес обычно больше среднечислового. Присутствие некоторого количества более низкомолекулярных частиц в исследуемой фракции полимера существенно снижает среднечис-ловое значение молекулярного веса. Наоборот, в присутствии некоторого количества более высокомолекулярных частиц в исследуемой фракции получаются заниженные результаты определения средневесовых значений молекулярного веса, но среднечисловое начение почти не меняется. Средневесовой и среднечисловой молекулярный вес являются важными характеристиками полимера. Отношение является мерой его полидисперсности. [c.76]


Смотреть страницы где упоминается термин Полидисперсность определение: [c.123]    [c.540]    [c.147]    [c.119]    [c.179]    [c.71]    [c.49]   
Идеи скейлинга в физике полимеров (1982) -- [ c.17 ]

Идеи скейлинга в физике полимеров (1982) -- [ c.17 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Полидисперсность



© 2025 chem21.info Реклама на сайте