Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия связи соединения инертных газов

    Как и следовало ожидать, различные исследователи дают различную интерпретацию природы химической связи в соединениях инертных газов. До настоящего времени не опубликованы достаточно полные расчеты свойств соединений ксенона. Действительно, несмотря на значительный прогресс в проведении расчетов молекулярных структур методом Хартри — Фока (метод самосогласованного поля), многоатомные соединения ксенона остаются все еще слишком сложными для изучения с помощью имеющихся вычислительных машин. Однако, если такие вычисления и удалось бы провести, только первый этап этого расчета мог бы быть законченным. Второй этап, а именно определение корреляционной энергии молекулы, в настоящее время не может быть завершен. [c.24]


    Применимость метода валентных связей к интерпретации экспериментальных данных пока все еще весьма ограничена. Этот подход позволяет, однако, значительно лучше понять физическую природу связи в соединениях инертных газов. Распределения заряда в основном состоянии фторидов ксенона, найденные как методом МО, так и методом ВС, весьма близки. Оба метода предсказывают значительное смещение заряда от ксенона к фтору. В методе МО этот результат обусловлен низким потенциалом ионизации (т. е. кулоновским интегралом) центрального атома инертного газа [14, 19]. В методе ВС определяющими являются ионные структуры действительно, ионные структуры Г Хе" —Р и Г—Хе+Р" вполне устойчивы [30]. Электростатическая энергия образования Хе Р (приближенно равная /хе —Лр —= 1,7 эв), по-видимому, возмещается энергией образования связи Хе+—Р [30]. Это общее соображение показывает важность низкого потенциала ионизации центрального атома, электроотрицательности лигандов и небольших размеров лигандов при образовании соединений инертных газов. Преимущество фтора по сравнению с другими галогенами обусловлено не только величиной его сродства к электрону, но и меньшими его размерами [30]. К сожалению, в настоящее время нельзя сделать более обоснованных заключений. [c.55]

    Справа выписано число неспаренных внешних электронов и формулы соответствующих водородных соединений. Валентность, согласно изложенному, должна равняться этому числу неспаренных электронов. Мы видим, что в полном соответствии с опытными данными водород, литий, фтор и натрий — одновалентны, кислород — двухвалентен, азот — трехвалентен. Атомы инертных газов гелия и неона не образуют молекул, так как все их электроны спарены, поэтому их валентность равна нулю. Противоречие мы наблюдаем лишь для атомов Ве, В, С, для которых возможны и другие валентности (указанные в скобках). Но это противоречие только кажущееся и объясняется тем, что мы привыкли считать, что свободные атомы, образуя химическую связь, обязательно сохраняют строение своих электронных оболочек. Но не существует никаких причин, по которым это должно быть только так атом, образуя связь, уже не является свободным, и его электронная конфигурация может и должна — в большей или меньшей степени) измениться. Поэтому необходимо принимать во снимание те изменения энергии, которые могут возникнуть при образовании химической связи. [c.71]

    Поскольку в структуре атомов галогенов недостает лишь по одному электрону для построения оболочки инертного газа, то для всех этих элементов характерна ковалентность 1 и степень окисления —1. Этим и исчерпываются валентные возможности фтора (за исключением мостиковых соединений), так как у атома фтора во внешнем электронном слое нет свободных квантовых ячеек и разъединение спаренных электронов практически происходить не может. Возбуждение, связанное с переводом одного 2р-электрона на уровне Зз, требует (в расчете на 1 моль атомов) затраты 1225 кДж/моль. Такие большие энергетические затраты не окупаются энергией, которая выделяется при образовании химических связей возбужденным атомом. [c.140]


    Возможно образование соединений за счет ковалентных связей, если перевести атомы инертных газов в возбужденное состояние, т. е. за счет энергии извне электроны 5- и р-подуровней перевести на вакантные места -подуровней. Этого нельзя сделать для атомов гелия и неона, так как они имеют один или два уровня и -подуровня в этих атомах нет. Для атомов аргона, криптона, ксенона и радона при возбуждении появятся холостые электроны и станет возможна ковалентная связь. Схема передает вероятность возбуждения  [c.637]

    Ионная связь обусловливает образование ионных кристаллов, а также ионных молекул, существующих в парах ионных соединений. Она является следствием электростатического притяжения противоположно заряженных ионов и возникает между атомами, сильно отличающимися потенциалом ионизации и сродством к электрону. Наименьшим потенциалом ионизации обладают атомы щелочных металлов. Отдавая свой внешний электрон, эти атомы превращаются в одновалентные катионы, электронная оболочка которых подобна оболочке атомов инертных газов. Наибольшей энергией сродства к электрону обладают атомы галогенов. Достраивая свою электронную оболочку, эти атомы становятся одновалентными анионами. [c.114]

    Предварительно адсорбированный катализатором водород является чрезвычайно реакционноспособным и в атмосфере инертного газа снимается с поверхности прочно адсорбирующимся веществом практически мгновенно. Однако количество водорода, снимаемого с катализатора, сильно зависит от природы непредельного соединения. Если малеиновокислый натрий извлекает из скелетного никеля (1 г) в щелочной среде около 40 см водорода, то в тех же условиях о-нитрофенол способен извлечь до 70 см водорода. Предварительно адсорбированный на поверхности водород, если он способен вступать в реакцию с данным непредельным соединением, легко взаимодействует с ним во всех средах. Следовательно, для каждого типа непредельных соединений существует оптимальная энергия связи водорода с поверхностью катализатора. Поэтому в энергетических расчетах нельзя пользоваться усредненными энергиями связи. Специфическая адсорбция катионов приводит к ионизации и десорбции поверхностно-адсорбированного на палладии водорода, и основной реакционной формой становится водород, растворенный в палладии в виде протонов. [c.202]

    В 1916 г. Льюис и Ленгмюр выдвинули так называемую октет-ную теорию химической связи, считая, что всякая перестройка атома объясняется его стремлением принять устойчивую восьмиэлектронную оболочку атома ближайшего инертного газа. Поэтому атомы одинаковых или разных элементов объединяют свои электроны так, чтобы каждый из них имел восьмиэлектронную оболочку, содержащую обобщенные электроны. Пример графического изображения молекул простых веществ дан на рис. 29. Однако объяснения процесса объединения электронов по существу эта теория не дала. Развитие волновой механики атома явилось основой современного учения о химической связи и строения молекул. Причиной возникновения связи между атомами является уменьшение энергии двух или нескольких изолированных атомов при образовании общего, более устойчивого агрегата — молекулы. При соединении атомов между собой их орбитали с одним электроном (незаконченные) образуют общую систему орбиталей молекулы с выделением энергии, так как полученная система [c.69]

    При образовании простых соединений атом титана прежде всего отдает 2 спаренных 45-электрона в этом случае степень окисления минимальна и равна П. Затем он может отдавать один или оба неспаренных ( -электрона, что соответствует степеням окисления И1 и IV. Однако отрыв всех четырех электронов требует большой затраты энергии, что видно из потенциалов ионизации, поэтому ион Т1 реально не существует. Связи в соединениях Т1(1У) имеют преимущественно ковалентный характер, в соединениях Т1 (П) для связей характерно преобладание ионной составляющей. Наиболее устойчивая степень окисления титана IV, поскольку в этом состоянии он имеет устойчивую конфигурацию, соответствующую конфигурации инертного газа (Аг). Низшие степени окисления реализуются только в соединениях, существующих в определенных условиях на воздухе или Б водных растворах Т1 (II) и Т1 (III) быстро окисляются до Ti (IV). [c.208]

    Образование ионов, постулируемое в теории Косселя, связано с перестройкой электронной оболочки атомов, вступающих в химическое соединение. Электрон (или несколько электронов) одного атома переходит к другому атому таким образом, чтобы образовались ионы, имеющие устойчивую электронную конфигурацию, близкую к структуре инертных газов. Такая перестройка осуществляется в том случае, когда она связана с выделением энергии при образовании молекулы. Атомы металлов обычно образуют положительные ионы, отдавая электроны атомам металлоидов. [c.629]


    С другой стороны, р-электроны атомов и соответствующие тг-электроны молекул, имеющие квантовое число 1=1, обладают и орбитальными и спиновыми моментами. Но результирующий магнитный момент равен нулю не только у систем с двумя 5 - и шестью /1-электронами, образующими нормальный стабильный октет, как в структурах инертных газов, но также у систем с двумя 5- и двумя р-электронами, которые в спектроскопии обозначаются как зРо. Такие системы имеются у атомов углерода, олова и свинца. С другой стороны, системы, содержащие четыре р-электрона, как в атомах кислорода и серы, могут обладать результирующим моментом. Одно из нормальных спектроскопических состояний атома кислорода, а именно, состояние Рг соответствует атому, имеющему магнитный момент. С химической точки зрения существенно, что те атомы и молекулы, которые содержат нечетное число электронов, имеют некомпенсированный электронный спин и поэтому должны обладать результирующим магнитным моментом. Возможные значения магнитного момента любой такой системы строго ограничены они определяются квантовыми законами. Резонансные взаимодействия между электронными группами и обменная энергия образования связей не влияют на эти значения. Как будет показано на стр. 34-41, только те вещества, которые обладают постоянными магнитными моментами, обнаруживают парамагнитные свойства. Поэтому для всех органических соединений и других производ- ных легких элементов парамагнетизм можно рассматривать как физическое свойство, являющееся индикатором на свободные [c.30]

    Химическая стабильность недавно открытых соединений инертных газов [11 представляет значительный интерес, поскольку нри отом, по-видимому, наруо1ается одно из старейших и общепринятых правил теории валентности. Задачей априорного теоретического исследования этих молекул является, помимо изучения вопроса устойчивости соединений, очевидно, также определение энергии связи, распределения зарядов, силовых констант и т. д. В настоящее время такая программа не может быть реализована полностью. Однако некоторые выводы молшо сделать на основании полуэмпи-рического рассмотрения. Главным недостатком полуэмпирической теории является то, что в ее рамках нельзя делать однозначных выводов об устойчивости различных соединений. Но зато полу-эмпирическая теория позволяет достаточно просто интерпретировать широкий круг экспериментальных данных с единой точки зрепия. Например, в рамках внутренне согласованной схемы, которую дает такая теория, можно объяснить геометрическую форму исследуемых соединений, получить полезные оценки для распределения заряда в основном состоянии и интерпретировать оптические спектры. [c.24]

    Однако эти энергии связи достаточно малы для того, чтобы многие другие возможные соединения инертных газов оказались уже за гранью устойчивости, в особенности соединения с lj и Bfj, у которых энергия связи Xg значительно выше, чем у Fa- В частности, до сих пор все попытки получить соединения ArFa, K I2 и ХеВГа заканчивались неудачей. [c.226]

    Наконец, молекулы АХ (см. рис. 95, е), в том числе большинство комплексов, имеют октаэдрическое строение с прямыми углами между шестью связями ядра с лигандами. Такое же строение имеют гексафториды инертных газов. В этом случае неспаренный р-электрон атома фтора вступает в связь с одним из спаренных р-электронов внешней р -оболочки инертного газа. Энергетически более выгодным оказывается образование связей обоими спаренными электронами р -оболочки, что приводит к сравнительно устойчивым соединениям типа ХеРд, ХеР4 и ХеРе (энергия связи Хе—Р равна в них 39 30 и 31 ккал1молъ соответственно). Таким образом, выявляется химическая активность ортогональной заполненной р -обо-лочки. Способность к взаимодействию ионов с внешними р -оболочками еще до открытия в 1962 г. соединений инертных газов [74—78] дала нам основание утверждать, что ОЦК структура металлов возникает в результате таких же обменных направленных связей [93, 160, 161, 162, 212]. [c.210]

    Азот и некоторые его соединения. Азот входит в состав белков и других органических соединений, селитр (например, чилийской NaNOa), многих природных и искусственно получаемых соединений. В свободном состоянии (N2) содержится в атмосфере (75,5 вес.%). Энергия связи N=N очень велика (225 ккал моль), поэтому молекулы N2 весьма пассивны в обычных условиях. Как относительно инертный газ, обладающий довольно высокой теплопроводностью, он применяется для наполнения мощных осветительных ламп. Обычные осветительные лампы наполняются смесью 86% Аг и 14% Nj. При повышенной температуре азот становится активным и соединяется с металлами, образуя нитриды МёзЫг, BagNj, AIN и др. О нитридах переходных металлов см. гл. ХП. [c.300]

    Выше мы касались вопроса о физической или химической природе сил, определяющих адсорбцию (ср. теории Лангмюра и Поляни). Следует отметить, что это различие далеко не всегда может быть четко проведено. В крайних случаях физическая адсорбция, определяемая лишь Ван-дер-Ваальсовыми силами, характеризуется хорошей обратимостью, отсутствием стехиометрических соотношений, уменьшением адсорбции при повышении температуры, близостью тепловых эффектов адсорбции к теплотам сжижения или испарения такова адсорбция инертных газов или гексана на угле. В других крайних случаях химическая адсорбция осуществляется только путем химического взаимодействия, например, между кислородом и вольфрамом или кислородом и серебром при повышенных температурах здесь адсорбция почти необратима, тепловой эффект близок к энергии образования химических соединений (около 100 ккалЫоль и выше) и др. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо, а следы его связаны прочно и могут быть удалены лишь путем длительного прогревания и откачивания. Кислород на металлах или водород на никеле адсорбируется при низких температурах физически, ввиду малой скорости химической реакции при этих температурах, но при повышении температуры начинает протекать адсорбция с заметной энергией активации (активированная адсорбция) по типу химических реакций. В определенном интервале повышения температур прирост химической адсорбции (или хемосорбции) перекрывает падение физической адсорбции и на кривой температурной зависимости адсорбции возникает промежуточный максимум (рис. 41), характерный для наличия активированной адсорбции. [c.97]

    Часто при адсорбции металлами таких реакционноспособных газов, как водород, кислород, окись углерода и другие, происходит как физическая адсорбция, так и хемосорбция, которая приводит к образованию новых поверхностных соединений. В этом случае адсорбированная молекула или продукты ее превращения локализуются на поверхности с большой энергией связи с поверхностными атомами металла [270], так что значительно более слабыми межмолекулярными взаимодействиями хемосорбированных молекул друг с другом можно пренебречь. Однако в случае благородных газов, особенно таких, как криптон и ксенон, и некоторых других химически инертных молекул, таких, например, как перфторметан, наблюдается только молекулярная (физическая) адсорбция на поверхности металла. Исследование молекулярной адсорбции на чистой поверхности металла представляет значительный интерес для развития молекулярной теории адсорбции. Большинство металлов обладает простой кристаллической решеткой, например, медь и же- [c.56]

    Параллелизм, существующий между поведением кислорода при низких температурах и поведением химически инертных газов, таких, как азот, аргон и т. п., говорит о том, что здесь адсорбция имеет по преимуществу физический характер и обязана действию ван-дер-ваальсовых сил (стр. 80—81). При высоких же температурах кислород, очевидно, удерживается химическими валентными связями. Рис. 4 выражает представление Лэнгмюра [34] о природе поверхности угля. Атомы внутри твердого тела, несомненно, взаимно удерживаются силами первичной валентности и соответственно насыщены. Атомы на поверхности, напротив, хотя и притянуты этими силами к атомам, расположенным внутри частиц, имеют на внешней поверхности, так сказать, свободные химические валентности, создающие возмоншость соединения с такими элементами, как кислород. Химическая валентная связь кислорода и углерода так велика, что можно ждать освобождения большого количества энергии при ее образовании и будучи однажды создана, она разрушается с большим трудом. Действительно, присутствие кислорода но одну сторону от углеродного атома сильно понижает прочность связи его с другими [c.88]

    При собирании пучков положительных ионов имеет место отложение нейтральных частиц на коллекторе. Разделение и получение изотопов различных элементов методом масс-спектрометрии служит для получения чистых образцов изотопов для проведения такого разделения был сконструирован специальный прибор [1143, 1517], названный калутроном . К 1955 г. все элементы, имеющие стабильные изотопы, разделяли на калутроне исключение составили осмий и некоторые редкоземельные элементы с высоким атомным весом и инертные газы. По применению калутрона в специальных областях ядерной физики было опубликовано много работ [1090]. Основная проблема состоит в необходимости использования громоздкого оборудования для получения достаточно высокой дисперсии масс, особого ионного источника для получения интенсивных ионных пучков и специальной техники их отбора. На применяемых коллекторах [1516] имеются пазы их число и расстояния между ними выбираются в соответствии с типами ионных пучков разделяемых элементов каждый паз электрически изолирован от средних, что позволяет контролировать поступающий на данный коллектор ионный ток. При попадании сфокусированного ионного пучка на коллектор может выделяться энергия в несколько киловатт в связи с эффектами эрозии и нагрева могут иметь место значительные потери разделенного материала по сравнению с первоначально образовавшимся пучком. Для некоторых элементов лимитирующим фактором получения изотопов является не интенсивность ионного тока, достигаемая в ионном источнике, а невозможность их задерживания на коллекторе. Легколетучие элементы могут собираться на веществах, с которыми они вступают в химическое соединение. Для кислорода, например, может использоваться медный коллектор. Инертные газы в небольших количествах собираются на алюминиевой или серебряной фольге, в которую они проникают в виде атомов [789, 1883]. Особые трудности возникают в случае тяжелых элементов [1659] из-за относительно малого различия в массах их изотопов, что обусловливает необходимость применения коллекторов с тонкими стенками. [c.211]

    I группы или щелочных металлов Li, Na, К, Rb, s, (Fr), атом которых обладает единственным электроном на s-орбитали уровня, следующего за восьмиэлектронным уровнем атома инертного газа (в отличие от Си, Ag, Au). Химия этих элементов является наиболее простой по сравнению с химией элементов любой другой группы. Здесь также сходство между первым членом группы и родственными элементами значительно больше, хотя исключительно небольшие размеры атома и иона лития приводят к некоторым заметным отличиям в химических свойствах, которые будут подробнее рассмотрены в дальнейшем. Низкий потенциал ионизации (5,39 эе) обусловливает легкое образование иона Li , который существует как таковой в кристаллических солях, например Li l. В растворах ион сильно сольватирован, и в водном растворе его можно представить в виде Li (aq). Литий образует ковалентные связи Li — X. Вблизи точки кипения пар металла лития преимущественно одноатомен, но содержит около 1"/о двухатомных молекул Lig. Такие молекулы были обнаружены по характерному полосатому спектру. Несмотря на то что в первом приближении можно считать, что связь Li — Li обусловлена s—s-нерекрыванием, более подробное изучение свидетельствует о том, что имеется некоторая s—р-гибридизация, Б результате которой связь приобретает на 14 /о р-характер. Энергия связи Li —Li (27 ккал моль) довольно низка, а межатомное расстояние Li — Li равно 2,67 А. Существуют соединения лития, подобные gHgLi и gH-Li, которые проявляют свойства типичных ковалентных соединений, будучи довольно летучими и растворимыми в неполярных растворителях. В настоящее время не только не известны другие степени окисления лития, отличные от -fL но их нельзя ожидать вследствие того, что Li" обладает конфигурацией [c.57]

    Медь имеет один х-электрон сверх заполненной -оболочки, и поэтому ее иногда помещают в I группу периодической системы элементов. Это не 1 ыеет особого смысла, так как у меди мало общего со щелочными металлами, за исключением, конечно, формального состояния окисления —I. Заполненная -оболочка значительно менее эффективно экранирует 5-электрон от ядра по сравнению с оболочкой инертного газа, в результате чего первый потенциал ионизации Си существенно выше, чем у щелочных металлов. Так как в образовании металлической связи принимают участие и электроны -оболочки, то теплота испарения и температура плавления у меди значительно выше, чем у щелочных металлов. Все это обусловливает более благородный характер меди, в результате чего соединения меди имеют более ковалентный характер и повышенную энергию решетки, которые не компенсируются даже несколько меньшим радиусом однозарядного положительного иона Си+ по сравнению с ионами щелочных металлов в том же пер1зоде Си+0,93 На+0,95 н К+ 1,33 А. [c.311]

    Характеристика элемента. Электронная конфигурация атома 15225. Появление нового энергетического уровня, на котором у атома лития всего один электрон, определяет весь характер и поведение элемента. У него самый большой во 2-м периоде атомный ради-Л с, что облегчает отрыв валентного электрона (/ = 5,4 эВ) и возникновение иона Ы+ со стабильной конфигурацией инертного газа (гелия). Следовательно, его соединения образуются с передачей электрона от лития к другому атому и возникновением ионной связи с небольшой долей ковалентности. Литий типичный металлический эле.мент. В виде вещества это щелочной металл. От других членов I группы он отличается малыми размерами и )аименьшей, по сравнению с ними, активностью. В этом отношении он напоминает расположенный по диагопалк от Li элемент П гр ппы - - таг ний. В растворах ион Ь1+ сильно сольватирован его окружают несколько десятков молекул воды. Литий по величине энергии сольватации — присоединения молекул растворителя, стоит ближе к протону, чем к катионам щелочных металлов. [c.203]


Смотреть страницы где упоминается термин Энергия связи соединения инертных газов: [c.53]    [c.55]    [c.369]    [c.213]    [c.93]    [c.40]    [c.472]    [c.389]    [c.483]    [c.357]    [c.483]    [c.84]    [c.95]    [c.841]    [c.63]    [c.159]    [c.21]    [c.233]    [c.241]    [c.117]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертные газы соединения

Инертные газы энергии связи

Инертный газ

Инертных газов соединения

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи

Энергия соединения



© 2025 chem21.info Реклама на сайте