Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы анализа в ультрафиолетовой

    Г. Оптические методы анализа. Оптические методы анализа реагирующей смеси во многих случаях оказываются весьма удобными. В качеств оптических свойств, характеризующих систему, можно использовать поглощение при какой-то одной или нескольких длинах волн (в ультрафиолетовой, видимой, инфракрасной или микроволновой областях), показатель преломления смеси, вращение плоскости поляризации одним или несколькими веществами, рассеяние света макромолекулами или флуоресценцию некоторых из присутствующих веществ. [c.63]


    Дальнейшее исследование состава высококипящих нефтяных фракции в дополнение к обычно применяемым аналитическим методам включают новейшие методы анализа, такие, как хроматографию, спектроскопию в ультрафиолетовой и инфракрасной областях и в самое последнее время — масс-спектроскопию. [c.31]

    Метод анализа, примененный Горным бюро, основывался на перегонке, адсорбции и спектроскопии в ультрафиолетовой области. Сланцевый бензин вначале промывался разбавленными кислотой и щелочью для удаления смоляных кислот и оснований. Нейтральный бензин перегонялся затем на полупроцентные фракции по объему. Для каждой фракции определялись температура кипения, плотность, коэффициент преломления, содержание серы и азота, кроме того, проводился анализ углеводородов адсорбцией на силикагеле и по поглощению в ультрафиолетовой области спектра. [c.67]

    Проточные измерительные приборы, такие как инфракрасный спектрометр, ультрафиолетовый спектрометр и масс-спектрометр, все шире использующиеся в химической промышленности, могут найти применение и при ректификации на лабораторных и пилотных установках, особенно для аналитических разгонок [72]. Сиггиа [73] дал подробный обзор современных непрерывных методов анализа, применяемых при перегонке. В работе [74] можно найти сведения об аналитических анализаторах, предназначенных для исследования отдельных фракций. [c.462]

    Практическое использование реакции дегидрирования в целях исследования нефтяных углеводородов заключается прежде всего в количественном определении и дальнейшем выделении углеводородов, имеющих кольца, способные к дегидрированию. Кроме того, исследование строения образовавшихся ароматических углеводородов (а отсюда и исследование строения исходных гексаметиленовых углеводородов) может быть проведено значительно более надежно, благодаря хорошо разработанным методам анализа ароматических углеводородов при помощи ультрафиолетовых спектров поглощения. [c.317]

    Если анализируемой системе сообщать достаточную энергию, то электроны атомов переходят в возбужденное состояние и примерно через 10 с спонтанно возвращаются на нижележащие энергетические орбитали с эмиссией избыточной энергии в виде дискретных и характеристических для каждого вида атомов электромагнитных колебаний в видимой, ультрафиолетовой или рентгеновской областях спектра. При этом спектры носят линейчатый характер. При возбуждении валентных (оптических) электронов свободных атомов излучаемые линии расположены в видимой и ультрафиолетовой областях спектра. При возбуждении электронов внутренних орбиталей атома излучаются кванты с более жесткой энергией (рентгеновское излучение). Линейчатые рентгеновские спектры могут быть получены при облучении анализируемого вещества электронами (рентгеноспектральный метод анализа или более жесткими, чем излучаемые, рентгеновскими квантами (рентгенофлуоресцентный метод анализа). [c.8]


    Электронные спектры поглощения ароматических соединений широко используются в изучении углеводородной части нефтей, нефтепродуктов и других природных горючих ископаемых. Когда перешли к исследованию состава неуглеводородной части тех же продуктов, в частности соединений, содержащих серу и азот, наряду со всеми другими методами анализа стали привлекать и спектроскопию в ультрафиолетовой области. Возникла необходимость сбора и систематизации спектров поглощения нужных соединений, т. к. они были разбросаны по отдельным статьям и зарубежным каталогам, в которых, из-за отсутствия удобной системы, их было нелегко разыскать, не легче было добыть и сами каталоги. Это вызвало появление справочных книг [1, 2], которые в той или иной мере помогали идентифицировать выделенные из исследуемых продуктов типы соединений. [c.158]

    Рассмотрим основные схемы анализа нефтяных сернистых соединений. В них приняты следующие сокращения ЛМ — ламповый метод ПМТ — потенциометрическое титрование ПВ — полярографическое восстановление ИТ — индикаторное титрование ПМ — пиролитический метод УФС — ультрафиолетовая спектроскопия AMT — амперометрическое титрование. [c.85]

    Физико-химический анализ полимеров связан с большими трудностями, что объясняется сложным составом макромолекул. К методам анализа, позволяющим установить принадлежность исследуемого вещества к определенной группе полимеров, относятся спектроскопическое исследование, ультрафиолетовое облучение, метод сухой перегонки, элементарный анализ, определение чисел омыления. [c.31]

    Ультрафиолетовое облучение не является однозначным методом анализа, так как характер свечения исследуемого полимера может несколько изменяться в зависимости от метода подготовки образца, его формы, степени очистки полимера и т, д. Поэтому наряду с определением характера свечения производят анализ продуктов сухой перегонки полимера. Если в процессе сухой перегонки образуются жидкие продукты с различной вязкостью и температурой кипения, следовательно, полимер может принадлежать к группе полистирола, полиакриловых эфиров, полимет-акриловых эфиров, полиэтилена или полиизобутилена. Масло- [c.31]

    В фотографических методах анализа широкое распространение получили призменные спектрографы с кварцевой оптикой ИСП-28 и ИСП-30 (рабочая область спектра 200—600 нм). Онн позволяют различать спектральные линии, отстоящие друг от друга на расстоянии не менее 0,03 нм. Если дисперсия спектрографов ИСП-28 или ИСП-30 оказывается недостаточной для тех или иных целей, применяют призменные длиннофокусные спектрографы, например КС-55 или КСА-1. Их линейная дисперсия в ультрафиолетовой области в 2,5—3 раза выше, чем ИСП-28. [c.69]

    Спектры, расположенные в ультрафиолетовой, видимой и ближней инфракрасной областях длин волн, называются оптическими, и соответственно "методы анализа, основанные на использовании этих спектров, — оптическими. За единицу измерения длин волн спектральных линий в оптическом диапазоне принят нанометр (1 нм==10 м). [c.6]

    Люминесцентный метод анализа основан на измерении интенсивности свечения (люминесценции) атомов, ионов, молекул и других более сложных частиц при их возбуждении различными видами энергии, чаще всего квантами ультрафиолетового и видимого излучений. Главным преимуществом люминесцентного метода является низкий предел обнаружения (10 мкг/мл и менее), что практически важно при определении следовых количеств элементов. [c.88]

    Методы, основанные на взаимодействии излучения с веществом. Большое значение имеют различные оптические методы анализа. Измерение поглощения света является основой фотометрии. Различают две группы фотометрических методов колориметрию и спектрофотометрию. В колориметрии сравнивают окраску исследуемого раствора с окраской стандартного раствора. В спектрофотометрии определяют спектр поглощения вещества (раствора) или измеряют светопоглощение при строго определенной длине волны. Как чисто физический метод, фотометрия применяется для анализа растворов красителей, для определения окрашенных окислов азота в газах и т. п. Измерение поглощения в ультрафиолетовой и в инфракрасной частях спектра позволило распространить эти методы на многие бесцветные растворы, не поглощающие света в видимой области. Таким путем анализируют сложные системы, содержащие органические вещества, например различные фракции перегонки нефти, витамины и др. физиологически активные вещества. Измерение поглощения в инфракрасной области используется, кроме того, для определения мути в растворах, пыли в газах. [c.18]

    К оптическим методам анализа относится совокупность методов качественного и количественного анализов по интенсивности инфракрасного (ИК), видимого и ультрафиолетового (УФ) излучения. Это атомно-абсорбционный, эмиссионный спектральный, люминесцентный анализы, турбидиметрия, нефелометрия и фотометрический анализ, под которым обычно понимают методы регистрации поглощения молекулами определяемого компонента излу-чения в ИК, видимой и УФ-областях. [c.131]


    ФОТОМЕТРИЯ — оптические методы анализа веществ по спектрам поглощения в диапазоне длин волн от ультрафиолетовых до инфракрасных лучей. Ф. применяется в аналитической химии для количественного определения многих элементов. [c.268]

    Люминесцентный, или флуоресцентный, метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценции) при облучении их ультрафиолетовыми лучами. [c.28]

    Области применения фотометрии. Фотометрический анализ характеризуется высокой избирательностью и малыми затратами времени на его осуществление. Величина средней квадратичной ошибки фотометрических методов анализа составляет 2—5% (отн.). Благодаря этим преимуществам фотометрические методы очень широко используют. Некоторыми типичными примерами применения этого метода являются количественный анализ смесей (например, изомеров [63]), определение примесей в сплавах или минералах и породах [73] или же решение задач клинического анализа. Далее, фотометрические методы применяются при изучении кинетики реакций или для непрерывного аналитического контроля технологических процессов. Ввиду значительно больших молярных коэффициентов поглощения методы фотометрии в ультрафиолетовой области в общем обладают большей чувствительностью, чем методы инфракрасной спектроскопии [уравнение (2.3.7)]. Поэтому фотометрию в ультрафиолетовой и видимой областях предпочитают использовать при определении следовых количеств веществ [74], при контроле степени чистоты веществ, сочетая при необходимости фотометрические методы с подходящими способами выделения и концентрирования.  [c.248]

    Метод абсорбционной спектроскопии (спектрофотометрии) относится к оптическим методам анализа и основан на взаимодействии вещества с излучениями ультрафиолетовой (УФ), видимой и инфракрасной (ИК) областей электромагнитного спектра, а именно на избирательном поглощении электромагнитного излучения однородными нерассеивающими системами. [c.5]

    В последние годы для изучения химической кинетики стали широко применяться радиоспектроскопические методы и. в первую очередь, электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Усовершенствована аппаратура и получили дальнейшее развитие такие классические методы исследования, как инфракрасная ультрафиолетовая спектроскопия, спектрополяриметрия. Все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюминесцентные методы анализа короткоживущих частиц, импульсный фотолиз, метод остановленной струи, радиотермолюминесценции и т. п. Важную информацию о механизме химических превращений можно получить при изучении воздействия на процесс света, квантовых генераторов и ультразвука. Много информации позволяет получить комбинированное применение потенциометрических и оптических методов. [c.3]

    Спектрофотометрический метод анализа основан на качественном и количественном изучении светопоглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 500 ООО до 760 нм), видимой (от 760 до 400 нм) и ультрафиолетовой (от 400 до 1 нм). Задача спектрофотометрического анализа — определение концентрации вещества измерением оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома измеряют оптическую плотность желтого раствора хромата, поглощающего свет в сине-фиолетовой части видимого спектра. [c.453]

    В современной промышленности синтетических каучуков все шире используются физические и физико-химические методы анализа. Одним из таких методов является спектрофотометрия в ультрафиолетовой области спектра, применяемая для анализа самых разнообразных продуктов производства (определение примесей в мономерах и различных полупродуктах, изучение состава ряда полимеров, определение содержания различных ингредиентов в каучуках), для контроля некоторых процессов сополимер изации и т. д. В ряде случаев этим методом можно пользоваться для идентификации некоторых соединений и расшифровки состава образцов синтетического каучука. [c.2]

    Анализ стирола с помощью инфракрасных и ультрафиолетовых лучей. Методы анализа стирола с помощью инфракрасных и ультрафиолетовых лучей благодаря их чрезвычайной чувствительности очень важны для анализа смесей, содержащих небольшие количества мономера [21]. Любой из этих методов может быть использован для обнаруживания паров стирола в воздухе улавливанием мономера в поглотителе, содержащем подходящий растворитель. Для анализа очищенного стирола эти методы не применяются. [c.162]

    Эмиссионные спектральные методы анализа не характерны для оцределения серы и ее соединений. Определение затруднено тем, что спектральные линии серы, расположенные в видимой и ультрафиолетовой областях, доступных для работы с типовыми спектральными приборами, имеют высокие потенциалы возбуждения нетрудно возбуждаются в пламени, дуге и искре. Чувствительность определения серы даже в таких мощных импульсных источниках, как конденсированная искра и низковольтная искра, не превышает сотых долей процента [61, 75], что для ряда аналитических задач является недостаточным. Обзор спектрохимических методов определения неметаллов дан в работе [863]. [c.150]

    Спектрофотометрические методы анализа основаны на взаимодействии вещества с излучением ультрафиолетовой (УФ) и видимой областей электромагнитного спектра, а именно на избирательном поглощении излучения в этих областях спектра. Избирательность поглощения обусловлена частичной перестройкой электронного состояния вещества под влиянием излучения, переходами системы от одного энергетического уровня к другому. Интенсивность поглощения при электронных переходах для любой длины волны определяется вероятностью перехода и размером молекулы. Для возбуждения электронных уровней необходимо излучение УФ-участка спектра. Если электронные уровни молекул расположены достаточно близко друг к другу, то для осуществления перехода между ними достаточно воздействия излучения видимого участка спектра. [c.21]

    В спектрофотометрическом методе анализа поглощение света измеряют при строго определенной длине волны, которая соответствует максимуму поглощения данного окрашенного соединения (монохроматическое излучение). Спектрофотометрический метод имеет более широкие возможности, так как при нем можно проводить измерения в невидимых областях излучения ультрафиолетовой (УФ, длина волны X от 180 до 350 нм) и ближней инфракрасной (ИК, длина волны X от 760 до 1100 нм). [c.227]

    Спектроскопические методы в ультрафиолетовой области применяют для анализа соединений, имеющих хромофорные группы. К таким соединениям относятся практически все антиоксиданты, вулканизующие вещества, ускорители, пластификаторы и ряд других соединений, входящих в состав резин [63, 119]. Антиоксиданты определяют как непосредственно в растворе каучука, латекса, так и в экстракте [123—128]. При наличии в каучуках нескольких ингредиентов спектроскопический метод ограничен из-за трудности разделения полос поглощения. Поэтому предпочитают метод хроматографии. [c.66]

    К наиболее эффективным методам обнаружения и идентификации примесей принадлежат спектральные методы масс-спектры, инфракрасные, ультрафиолетовые спектры. Разработанный иедаино О Нилом [28] масс-спектральный метод анализа больших масс, иримеиимый для анализа масс порядка 700 и выше (СаоН-), оказался чрезвычайно ценным для обнарунгения примесей в высокомолекулярных углеводородах [31]. [c.504]

    Существующие спектральные методы анализа ароматических углеводородов (по сноктрам поглощения в ультрафиолетовой, средневолновой инфракрасно] областях и по спектрам комбинационного рассеяния) требуют примонепия сложной аппаратуры и связаны с затратой значительного времени. [c.559]

    ИК-спектры отражают положение колебательных и вращательных энергетических подуровней в молекулах. В то же время молекулы могут изменять свою электронную конфигурацию вследствие поглощения более высокочастотного электромагнитного излучения. Обычно полосы, соответствующие электронным переходам в молекулах, проявляются в видимой и ультрафиолетовой частях спектра. ИК-спектроскопня — один из папболее универсальных методов анализа моторных масел [98]. [c.55]

    Весьма перспективными являются ведущиеся в настоящее время в Советском Союзе и за рубежом работы по применению к исследованию масляных фракций нефти сдектральных и масс-спектрометрических методов анализа. Однако в применении к тяжелым масляным фракциям эти методы делают еще первые шаги. Так, например, по спектрам поглощения в ультрафиолетовой части спектра удается идентифицировать мнргоядерные ароматические углеводороды в высокомолекулярных нефтяных фракциях. [c.8]

    В последние годы чрезвычайно возросла роль хроматографических методов при исследовании органических соединений. Методами хроматографии (особенно газо-жидкостной) были решены многие аналитические задачи количественного анализа, однако проблемы идентификации неизвестных соединений могут быть успешно реигены лишь в сочетании с методами инфракрасной, ультрафиолетовой и масс-спектрометрии [225, 226]. [c.127]

    Наряду с рассмотренными методами ИК спектроскопии и масс-спектрометрии идентификация хроматографически выделенных из смеси веществ может быть выполнена и другими методами. К ним относятся метод ядерного магнитного резонанса, кулонометрия, полярография, пламенная фотометрия, спектроскопия в ультрафиолетовой и видимой областях и, наконец, химические методы анализа, преимущественно микрометоды. [c.196]

    Широкое применение инструментальных методов анализа ни в какой мере не умаляет роли классической аналитической химии, которая, безусловно, является основой современной аналитической химии. Поэтому на первом этапе студенты знакомятся с классическими методами анализа и лишь с основами электрохимических, спектроскопических, хроматографических и некоторых других современных методов анализа (книги 1 и 2 Основы аналитической химии ). На втором этапе студенты углубленно изучают и практически осваивают в лаборатории аналитической. химии потенциометрический, кондуктометрический, хро-нокондуктометрический, высокочастотный, полярографический, амперометрический, кулонометрический, эмиссионный и абсорбционные методы спектрального анализа в видимой, ультрафиолетовой и инфракрасной областях спектра, а также радиометрические, хроматографические и другие методы анализа, и в том числе методы титрования иеводных растворов и методы анализа редких элементов, которые изложены в этой книге. [c.18]

    Для регистрации спектральных линий применяются визуальные, фотографические и фотоэлектрические приборы и аппараты. В зависимости от способа регистрации спектра различают визуальный спектральный анализ, в котором спектр наблюдают в видимой области при помощи стилоскопов и стилометров или при помощи флуоресцирующих экранов, преобразующих невидимые ультрафиолетовые лучи в видимые. Визуальный анализ применяют в качественном анализе и иногда в количественном анализе. Если для регистрации спектров используют фотографические пластинки, то метод анализа называется фотографическим спектральным анализом. Особенно широко этот метод применяют в качественном и количественно анализе. В фотоэлектрическом спектральном анализе, который используется исключительно для количественного анализа, спектры регистрируются фотоэлектрическими приборами. [c.225]

    Атомно-ионизационный метод анализа был бы невозможен без использования лазеров. Поскольку наиболее селективным методом ио1П1зации атомов является нх предварительный перевод в одно из возбужденных состояний и поскольку в видимой и ультрафиолетовой областях спектра лежат спектральные линии атомов многих элементов, то имеиио лазеры, генерирующие излучение в этих областях, являются неотъемлемой частью любого прибора для атомно-ионизационного метода. В основном это лазеры, работающие на органических красителях как активных средах. Непрерывная перестройка длины волны излучения, достаточная для достижения (во многих случаях) режима насыщения, сделала лазеры на органических красителях незаменимым средством селективного возбуждения атомов многих элементов. Существует много типов таких лазеров. Наиболее часто используемые лазеры имеют следующие xapaivTepH THKH область непрерывной перестройки от —300 до 800 нм, выходная мощность 1—20 кВт в линии генерации, ширина которой варьируется от 1 до 0,01 нм при длительности 7— 12 НС в случае лазерной накачки и 1—50 мс при ламповой накачке лазера на красителях. Следующей неотъемлемой частью установки является атомизатор, в качестве которого наиболее широко, как это уже упоминалось, используется пламя, а также электротермические атомизаторы с испарением находящихся в них образцов в вакууме. Находят применение и различного вида электротермические атомизаторы, работающие при атмосферном давлении. [c.185]

    В последние годы ситуация в химической кинетике стала меняться особенно быстро. Появились и нашли широкое применение радиоспектроскопические методы и в первую очередь электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Благодаря совершенствованию аппаратуры дальнейшее развитие получили такие классические методы исследования, как инфракрасная и ультрафиолетовая спектроскопия. Наряду с этим все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюмине-сцентные методы анализа коротко живущих частиц, метод остановленной струи, импульсный фотолиз, радиотермолюминесценция и т. п. Важную информацию о механизме химических превращений можно [c.3]

    Химический функциональный анализ далеко не всегда позволяет однозначно установить структуру органических соединений. Некоторые группы дают сходные реакции. Иногда вещества в условиях определения оказываются неустойчивыми. Функциональный анализ не нозволяет судить о составе смесей, числе тех или иных групп и о макроструктуре вещества (простраиствеином строении, структуре кристаллов или жидкости, межмолекулярных взаимодействиях и т, п.). Вследствие этого существенную роль в исследовании строения и свойств соединений играют физико-химические, или инструментальные, методы анализа спектральные, электрохимические, хроматографические, радиометрические и др. Для установления структуры вещества чаще всего используют методы, основанные на взаимодействии вещества или смеси веществ, их растворов с различного вида излучениями. К ним относятся ультрафиолетовая, видимая, инфракрасная спектроскопия, метод люми-иесценцин, оптический и рентгеновский спектральный анализ, рефрактометрия, поляриметрия, метод ядерного магнитного резонанса. На взаимодействии с магнитным полем основан метод электронного парамагнитного резонанса, а последовательно с электрическим и магнитным — масс-спектрометрия. Некоторые из этих методов рассмотрены в посебии. [c.82]

    Учитывая важность развития современных методов анализа нефти, жидких и газообразных продуктов (спектральных хроматографических и др.) рекомендовать Госнефтехимкомитету решить вопрос об обеспечении в короткие сроки научно-исследовательских институтов современными надежными приборами контроля качества и для исследования нефтепродуктов (хроматографы, масс-спектрографы, инфракрасные и ультрафиолетовые спектрографы и т. п.). [c.277]

    Абсорбционный спектральный анализ в ультрафиолетово видимой и инфракрасной областях спектра. Различают спектр фотометрический и фотоколориметрический методы. Спектроф тометрический метод анализа основан на измерении поглощен света (монохроматического излучения) определенной длины во. ны, которая соответствует максимуму кривой поглощения вещее ва. Фотоколориметрический метод анализа основан на измерен светопоглощения или определения спектра поглощения в пр) борах—фотоколориметрах в видимом участке спектра. [c.328]


Смотреть страницы где упоминается термин Методы анализа в ультрафиолетовой: [c.45]    [c.285]    [c.6]    [c.180]    [c.3]    [c.368]    [c.40]    [c.94]    [c.40]   
Химический анализ в ультрафиолетовых лучах (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ КПАВ методом ультрафиолетовой спектроскопии

Инструментальные методы анализа ультрафиолетовая

Качественный анализ фотографическим методом при помощи спектра железа в ультрафиолетовой области

Качественный анализ фотографическим методом с использованием спёк. тра железа в ультрафиолетовой области

Метод анализа измерений ультрафиолетовые

Метод количественного анализа нафталиновых углеводородов по спектрам поглощения в ультрафиолетовой области

Метод спектрального структурно-группового анализа в ультрафиолетовой и инфракрасной областях спектра

Методы анализа в ультрафиолетовой области спектра, классификация

Приложение Г. Растворители для анализа методом ультрафиолетовой и видимой спектроскопии

Специальные методы спектрохимического анализа в ультрафиолетовой и видимой областях



© 2024 chem21.info Реклама на сайте