Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы, открытие

    Опыт 5. Открытие ионов щелочных металлов по окрашиванию пламени. Подержите некоторое время нихромовую или платиновую проволочку в соляной кислоте, окуните ее в раствор соли лития и внесите в бесцветное пламя горелки. Так же поступите с солями калия и натрия, каждый раз предварительно очищая проволочку в кислоте. Соли натрия испытывайте в последнюю очередь. Запишите, в какой цвет окрашивают бесцветное пламя соли лития, калия и натрия. [c.192]


    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Судя по атомной массе, аргон должен был занимать в периодической системе место около хлора, калия и кальция. Однако в этом месте все клетки системы были надежно заняты известными химическими элементами. После обнаружения гелия на Земле Рамзай пришел к выводу, что существует целая группа химических элементов, которая располагается в периодической системе 1 ежду щелочными металлами и галогенами. С помощью периодического закона и методом Д. И. Менделеева, было определено число неизвестных благородных газов Т4- X свойства, в частности атомные массы. Это позволило осуществить и целенаправленные поиски благородных газов. Всего лишь за четыре последующих года было открыто пять новых элементов. Большинство благородных газов выделено из воздуха. [c.502]

    Кроме краун-эфиров, криптатов и ониевых солей для катализа реакций между твердыми солями щелочных металлов и алкилирующими агентами могут быть использованы полиэфиры с открытой цепью, диамины и полиамины i[93, 94]. [c.43]

    Открытие щелочных металлов по окраске пламени. Получить у лаборанта набор, состоящий из штатива с тремя пробирками и стеклянными палочками с впаянными в них нихромовыми проволоками. В пробирках находятся растворы хлористых солей лития, натрия и калия. Во внешний конус пламени горелки внести проволоку из пробирки с раствором соли лития и, накаляя ее, отметить характерную окраску пламени. Затем в пламя пооче- [c.187]


    Роданиды щелочных металлов Открытие висмут а [c.204]

    Гей-Люссак значительно способствовал развитию неорганической химии своими ставшими классическими исследованиями галогенов, соединений фосфора, щелочных металлов, открытием бора (почти одновременно с Дэви в 1808 г.) треххлористого фосфора, перекисей натрия, калия, бария и кальция -.  [c.178]

    Открытие новых элементов и изучение свойств элементов и их соединений, с одной стороны, позволили накопить большой фактический материал, а с другой — выявили необходимость его систематизации. Первыми попытками систематизации элементов следует, по-видимому, считать установление их общих групповых свойств. Так, наиболее резко выраженный основный характер был обнаружен у соединений элементов, названных щелочными металлами, а способность к проявлению кислотных свойств — у соединений галогенов. Кроме того, для многих элементов были получены количественные характеристики, определяющие их свойства. Среди них наибольший интерес представляли относительная атомная масса элементов и их валентность, т. е. способность к образованию различных форм соединений. [c.19]

    В разд. 1.1 межфазный катализ был определен как двухфазная реакция между солями (в твердой форме или в виде водных растворов), кислотами или основаниями и субстратами, находящимися в органических растворителях, протекающая в присутствии так называемых межфазных катализаторов. Типичными представителями таких катализаторов являются ониевые соли или вещества, образующие комплексы с катионами щелочных металлов, такие, как краун-эфиры, криптанды или их аналоги с открытой цепью. Как уже указывалось в разд. 1.1, определение МФК основано скорее на наблюдаемых эффектах, а не на каком-либо едином механизме. Впрочем, широкие исследования этих эффектов привели к выяснению механизма многих реакций МФК. [c.44]

    Например, в настоящее время установлено, что атомные массы возрастают в такой последовательности Ре, N1, Со, Си в четвертом периоде (ср. с 4-й строкой рис. 7-1), Яи, КЬ, Рс1, Ag в пятом периоде (ср. с 6-й строкой рис. 7-1) и 08, 1г, Р1, Аи в шестом периоде (ср. с 10-й строкой рис. 7-1). Однако N1 по своим свойствам больше напоминает Рё и Р1, чем Со. Кроме того, оказалось, что Те имеет большую атомную массу, чем I, но I несомненно сходен по химическим свойствам с С1 и Вг, а Те сходен с 8 и 8е. Наконец, после открытия благородных газов обнаружилось, что Аг имеет большую атомную массу, чем К, тогда как все остальные благородные газы имеют меньшие атомные массы, чем ближайшие к ним щелочные металлы. Совершенно очевидно, что во всех трех отмеченных случаях нельзя руководствоваться атомными массами при размещении элементов в периодической системе. Поэтому всем элементам периодической системы были приписаны порядковые номера от 1 до 92 (в наше время до 105). (Порядковые номера элементов приблизительно соответствуют возрастанию их атомных масс.) Если расположить элементы в периодической таблице в последовательности возрастания их порядковых номеров, химически сходные элементы образуют в ней вертикальные колонки (семейства или группы). [c.311]

    При проведении работ, связанных с нагреванием исследуемых веществ до температуры 100 °С, в качестве теплоносителя наиболее целесообразно использовать воду. Однако следует помнить, что при работе с обезвоженными (так называемыми абсолютированными) растворителями использование водяных бань не допускается. Кроме того, водяные бани не допускается использо-вать для обогрева сосудов, в которых имеются бурно реагирующие с водой металлоорганические соединения и щелочные металлы. При постоянном использовании открытых кипящих водяных бань в вытяжном шкафу увеличивается вероятность выхода из строя находящегося в нем электрооборудования и поражения током обслуживающего персонала. Поэтому для уменьшения испарения воды наиболее целесообразно применение водяных бань закрытого типа с набором концентрических колец. [c.49]

    Открытие катализаторов на основе оксидов цинка и хрома явилось значительным шагом в разработке избирательного синтеза метанола из оксида углерода и водорода. Высокие выходы метанола удалось впервые получить в присутствии этих катализаторов при сравнительно высоких давлениях. Вскоре выяснилось, что модифицирование этих катализаторов добавкой солей или оксидов щелочных металлов приводит к образованию жидких продуктов, состоящих главным образом из алифатических спиртов. С этого момента дальнейшее развитие промышленного синтеза кислородсодержащих соединений из СО и Н2 в основно.м пошло по двум направлениям синтез высших [c.122]

    Моноэфиры, по-видимому, достаточно прочные в термическом отношении вещества. Возможно, моносульфиды являются продуктом, образующимся из других сернистых соединений с открытой цепью. Дитиоэфиры, или дисульфиды, построены по типу К — 8 — 3 —-Н и представля )т собой также нейтральные вещества с высокими температурами кипения. Дисульфиды легко, восстанавливаются до меркаптанов, на чем основан способ их определения в нефти. Происхождение дисульфидов, по-видимому, связано с окислением меркаптанов. Другой пуТь образования — через меркаптиды и полисульфиДы щелочных металлов  [c.174]


    В первых вариантах периодической системы не было предусмотрено место для инертных и благородных газов, поскольку трудно было предположить, что могут существовать элементы, не способные к химическому взаимодействию. Хотя Д. И. Менделеев и оставлял вакантные клетки для ряда неизвестных в то время элементов, при этом он ориентировался на их химическую аналогию в химических свойствах с уже известными элементами. Не случайно, что после открытия аргона он сначала не признал его новым элементом, считая аргон аллотропической формой азота (подобно паре кислород — озон). Однако после открытия целого семейства химически неактивных газов в 8-м издании Основ химии (1906) Д. И. Менделеев писал Ныне, когда известна целая группа Не, Ые, Аг, Кг и Хе и когда стало очевидным, что у них столь же много общего, как в группе щелочных металлов, или у галоидов, надо было признать, что они также между собой близки, как эти последние... Эти элементы по величине их атомных весов заняли точное место между галоидами и щелочными металлами, как показал Рамзай в 1900 году. Из этих элементов необходимо образовать свою особую нулевую группу, [c.396]

    Открытие периодического закона. К середине XIX в. был накоплен достаточно богатый экспериментальный материал, характеризующий свойства химических элементов и их соединений. Было установлено, что способность проявлять основные свойства принадлежит в первую очередь оксидам элементов, называемых щелочными металлами, и — в несколько меньшей степени — оксидам элементов, называемых щелочноземельными металлами способность проявлять кислотообразующие свойства принадлежит в первую очередь оксидам галогенов и других неметаллических элементов. Было известно также о существовании элементов с промежуточными свойствами, у высших оксидов которых проявляются кислотообразующие свойства, а у низших оксидов, хотя и не очень явно, — основные. Эти характеристики химических элементов оценивались тогда только качественно, так как в то время еще не были известны количественные [c.21]

Рис. 57. Закрытая поверхность Ферми щелочных металлов (а). Открытая поверхность Ферми меди, серебра, золота (б) Рис. 57. Закрытая <a href="/info/7647">поверхность Ферми</a> <a href="/info/6862">щелочных металлов</a> (а). <a href="/info/466391">Открытая поверхность</a> Ферми меди, серебра, золота (б)
    Растворы металлов К, Rb, s в жидком аммиаке принимают синий цвет. Как пары самих щелочных металлов, так и их летучие соли, окрашивают бесцветное пламя газовой горелки в характерные для них цвета литий — в карминово-красный, натрий — в ярко-желтый, калий, рубидий и цезий — в фиолетовый. Это свойство используется в качественном анализе для их открытия. [c.232]

    Щавелевокислые соли (оксалаты) щелочных металлов растворимы в воде, соли остальных металлов — не растворимы. Например, щавелевокислый кальций не растворим в воде и в уксусной кислоте, но растворим в соляной это используют в качественном анализе для открытия кальция. [c.178]

    Для открытия периодического закона Д. И. Менделееву предстояло изучить взаимосвязь-между всеми группами элементов, т. е. раскрыть диалектику перехода от особенного (группа элементов) к всеобщему (система элементов). В первую очередь следовало сопоставить группы несходных элементов, резко отличающихся своими химическими свойствами, т. е. группы галогенов и щелочных металлов. [c.73]

    Опыт 4. (Демонстрационный). Открытие ионов щелочных металлов по окрашиванию пламени [c.8]

    Все это дало возможность Д. И. Менделееву открытый им закон назвать законом периодичности и сформулировать следующим образом свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости (или, выражаясь алгебраически, образуют периодическую функцию) от величины атомных весов элементов. В соответствие этому закону и составлена периодическая система элементов , которая объективно отражает периодический закон. Весь ряд элементов, расположенных в порядке возрастания атомных масс, Д. И. Менделеев разбивает на периоды. Внутри каждого периода закономерно изменяются свойства элементов (например, от щелочного металла до галогена). Размещая периоды так, чтобы выделить сходные элементы, Д. И. Менделеев создал периодическую систему химических элементов. При этом у ряда элементов были исправлены атомные массы, а для 29 еще не открытых элементов оставлены пустые места (прочерки). [c.36]

    Были открыты Когда создавалась Периодическая система, благо-благородные газы, родные газы еще не были известны. После того, как которые образовали они были один за другим открыты, то оказалось, новую группу что - их следует поместить между галогенами Периодической системы... (УП группа) и щелочными металлами (1 группа). [c.50]

    К середине XIX в. было открыто 63 химических элемента, изучены их свойства и соединения. Предпринималось большое число попыток систематизировать известные элементы, построить их классификацию. В результате были установлены группы химических элементов, сходных по свойствам, например щелочные металлы, галогены, однако дать общую классификацию химических элементов не удавалось. [c.30]

    Единственным способом получения эргостерина является извлечение его из природного сырья. Легкодоступным и чаще всего применяемым сырьем служат дрожжи. Для увеличения выхода перед собственно экстракцией проводят процесс разрушения структуры дрожжевых клеток, причем применяют нагревание с водным раствором гидроокиси или карбоната щелочного металла в открытом сосуде или при повышенном давлении нагревание со спиртовым раствором гидроокиси щелочного металла автолиз и замораживание при помощи сухого льда .  [c.760]

    Бунзен и Кирхгоф сами продемонстрировали эффективность этого метода. В 1860 г., исследуя образец минерала, они обнаружили его в спектре линии, которые не принадлежали ни одному из известных элементов. Начав поиски нового элемента, они установили, что это щелочной металл, близкий по своим свойствам натрию и калию. Бунзен и Кирхгоф назвали открытый ими металл цезием (от латинского саез1и5 — сине-серый), так как в спектре этого металла самой яркой была именно синяя линия. В 1861 г. эти ученые открыли еще один щелочной металл, который также назвали по цвету его спектральной линии рубидием (от латинского гиЬ1с1из — темно-красный). [c.103]

    К описанным выще инициаторам полимеризации бутадиена на основе щелочных металлов генетически примыкают алфиновые катализаторы, открытые Мортоном в конце 1940-х гг. и представляющие собой комплекс аллилнатрия, изопропилата натрия и хлорида натрия [26]. Образующиеся при действии этих катализаторов полибутадиены содержат 70—75% транс-1,4-звеньев и обладают молекулярной массой до нескольких миллионов. Сравнительно недавно были разработаны условия регулирования молекулярной массы таких полимеров введением 1,4-дигидробензола или 1,4-дигидронафталина [28]. [c.180]

    Подробно были изучены солюбилизация, экстракция и активация анионов карбоксилатов щелочных металлов различными комплексантами. Кнёхель сравнил активность в качестве МФ-катализаторов для реакции между твердым ацетатом калия и бензилхлоридом в ацетонитриле многих лигандов (краун-эфиров, аминополиэфиров, нонактина, полиподов и полиэфиров с открытой цепью) [109]. Результаты исследования показали, что между степенью солюбилизации и скоростью реакции нет простой корреляции. [c.129]

    Под действием полисульфидов щелочных металлов дихлорэтан превращается в каучукоподобные полимеры, которые можно вулканизировать. Получающиеся продукты исключительно устойчивы к действию растворителей. В настоящее время продукты реакции дихлорэтана с полисульфидами применяют в производстве средств борьбы с вредными насекомыми. Реакция дихлорэтана с толисульфидами, открытая в 1839 г., была усовершенствована фирмой Тиокол корпорейшн в том отношении, что процесс стали проводить в водных растворах в присутствии твердых диспергирующих веществ. Полученную эмульсию или латекс подвергали затем коагуляции. Поли-этилентетрасульфид, образующийся по уравнению [c.171]

    Реакция линейной полимеризации ацетилена в моновинилацетилен, дивинилацетилен и т. п., происходящая под каталитическим влиянием кислого раствора полухлористой меди, была открыта Ньюлэндом в США 30 лет назад. Ацетилен поглощается водным раствором хлорида аммония или хлорида щелочного металла, насыщенным полухлористой медью. При нагревании раствора можно отогнать из него непрореагировавший ацетилен и его полимеры, в основном дивинилацетилен (1,5-гексадиен-З-ин) и тетрамер ацетилена (1,5,7-октатриен-З-ин). Если этот процесс проводить непрерывно при низких степенях превращения ацетилена, можно показать, что первичным продуктом реакции является моновинилацетилен. В соответствующих условиях этот димер ацетилена может стать основным продуктом. Таким образом, процесс полимеризации протекает по следующей схеме  [c.290]

    Аналог этих соединений в ароматическом ряду — трифенилбор — обладает интересным свойством присоединять щелочные металлы с образованием окрашенных в желтый цвет кристаллических веществ состава (СбН5)зВ- Ме (Ме == Li, Na, К, Rb, s). В связи с этим следует упомянуть тетрафенилборат натрия (торговое название калигност), применяемый для качественного и количественного определения ионов калия, рубидия и цезия он может быть также использован для выделения и открытия алкалоидов и аммониевых солей. [c.188]

    Смеси всех горючих газов (Нг, НгЗ, АзНз, углеводородов, светильного газа) с воздухом или кислородом взрывоопасны. Перед зажиганием таких газов, получаемых в газогенераторах, необходимо постоянно проверять аппаратуру на отсутствие кислорода воздуха пробой на гремучий газ. Белый фосфор, щелочные металлы, а также многие металлы в тоикодисперсном состоянии самовоспламеняются на воздухе и поэтому наиболее огнеопасны. Горючие органические растворители нельзя назревать на пламени горелок, открытых электронагревательных приборах или вблизи них, а также вблизи таких источников искр, как выключатели, электромоторы и др. [c.511]

    Кирхгоф и Бунзен установили, что спектр каждого металла строго постоянен. Поэтому, обнаружив в спектрах некоторых образцов новые незнакомые линии в красной и голубой областях, они объяснили их появление присутствием примеси неизвестных в то время металлов. Действительно, удалось выделить два новых щелочных металла. Так, с помощью спектрального анализа были открыты рубидий гиЫс1и5 — красный) и цезий (саез из — голубой). [c.28]

    Пары щелочных металлов (простые вещества) и сложных соединений ЩЭ имеют характерное окрашивание — карминово-красное, Ыа — желтое, К — фиолетово-розовое, НЬ — беловато-розовое, Сз — фиолетово-розовое. Как известно, окраска пламени возникает в результате температурного возбуждения атома или иона, сопровождающегося перескоком электронов на более высоко лежащие энергетические уровни. Возвращение назад (на основной уровень) сопровождается излучением энергии определенной для данного элемента длины волны или нескольких длин волн (спектр испускания). Кстати, тяжелые щелочные металлы — КЬ и Сз — были открыты спектральным методом, и их названия отражают присутствие в спектрах отдельных характеристичных линий спектр рубидия содержит, кроме других, красную линию (рубидос — красный), цезий — голубую (це-леос — небесно-голубой). [c.12]

    Используя различные методы определения атомных масс элементов, Я. Берцелиус в 1826 г. дал повую систему атомных масс (см. стр. 152). В этой таблице атомные массы большинства металлов оказались очень близкими к современным соответствующие оксиды лшогих из них получили правильную формулу, Вместо прежних формул РеОг, РеОз, СиО и СиОг оп принял формулы FeO, ГегОз, СпгО, СиО, СаО, ВаО, АЬОз, МнгОз, СггОа и др. Однако атомные массы щелочных металлов были установлены неточно, так как для их оксидов Я. Берцелиус принимал такой состав NaO, КО и т. д. В 1841 г. В. Реньо внес коррективы в эти формулы, после чего в системе атомных масс Я. Берцелиуса почти не было принципиальных ошибок. Из 54 элементов, известных к концу жизни шведского химика, неправильными оказались атомные массы серебра, бора, бериллия, кремния, ванадия, циркония, урана, церия, иттрия и тория многие из них были исправлены лишь в результате открытия периодического закона Д. И. Менделеева. [c.136]

    Сопоставление атомных весов аргоновых элементов с атомным весом галоидов и щелочных металлов,— писал Д. И. Менделеев,— словесно сообщил мне 19 марта 1900 года проф. Рамзай в Берлине, а потом напечатал об этом в Philosophi al Transa tions . Для него это было важно как утверждение положения вновь открытых элементов среди других известных, а для меня — как новое блистательное утверждение общности периодического закона. Со своей стороны я молчал, когда мне не раз выставляли аргоновые элементы как укор периодической системе, потому что я поджидал, что скоро обратное всем будет видимо После некоторых сомнений и колебаний относптельно природы аргона и его аналогов Д. И. Менделеев признал, что новые элементы теперь стали доступными газами , однако чуждыми химических сноровок  [c.286]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточная. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов. Она не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин воли линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов вращательного (веретенообразного)-движения, что обусловливает появление у них, кроме орбитального, еще спинового вращательного момента, а также спинового магнитного момента (спин — от английского to spin — вращаться). Ориентация спинового момента электрона в дйух противоположных [c.62]

    Фториды других щелочных металлов растворимы в воде и не осаждаются фторидом аммония. Поэтому [ еак-цию с NH4F применяют для открытия и отдсльния Li -ионов от остальных катионов щелочных металлов. Однако Мй " -ионы с F -ионами образуют белый осадок MgF.j, поэтому Mg -ионы мешают открытию Li -ионов. [c.469]

    После ряда открытий, в частности после обнаружения волновых свойств электронов и других микрочастиц, стало ясно, что теория Бора недостаточна. Она потерпела неудачу даже в попытке построения второго по сложности атома — атома гелия, состоящего из ядра и двух электронов, и не смогла объяснить обнаруженной мульти-плетности (множественности) спектральных линий в атомных спектрах элементов. Например, спектральные линии щелочных металлов оказались дублетами с очень малым отличием длин, волн линий, составляющих эти дублеты. Также линии серии Бальмера в спектре водорода не являются единичными и каждая расщеплена на две очень близко расположенные линии. Это объяснили Уленбек и Гоудсмит в 1925 г. допущением у электронов [c.76]

    Осколки химической посуды и другие предметы с острыми краями нельзя выбрасывать в корзины для бумаг и другие подобные мусоросборники. Их следует собирать в специальные ящики. Опасные вещества, например такие, которые могут выделять-ядовитые газы, или самовоспламеняющиеся остатки (никель Ренея. фосфор, щелочные металлы), нельзя выбрасывать в мусоросборники или в канализационную систему. Кроме того, в канализационную систему запрещается выливать или высыпать ненужные вещества и растворы, которые нерастворимы в воде-или не смешиваются с ней. Их следует обезвреживать, производя соответствующую химическую обработку или сжигая в специально отведенных местах вне пределов лаборатории (желательно на открытом воздухе). Лри выливании в канализационную систему смешивающихся с водой огнеопасных или иных агрессивных жидкостей необходимо пускать для промывки сильный ток воды. [c.166]


Смотреть страницы где упоминается термин Щелочные металлы, открытие: [c.56]    [c.39]    [c.91]    [c.78]    [c.436]    [c.47]    [c.7]   
Химический анализ в ультрафиолетовых лучах (1965) -- [ c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Двойные галогениды Т и щелочных металлов, открытие

Металлы открытие

Открытие двухромовокислых I солей в хромовокислых солях щелочных металлов

Открытие едкой щелочи в цианистых солях щелочных металлов

Открытие ионов щелочных металлов в присутствии всех остальных катионов

Открытие примеси аммония в цианистых солях щелочных металлов

Открытие свободной едкой щелочи в сернистых щелочных металлах

Открытие щелочных металлов в силикатах

Сульфаты щелочных металлов, открытие

Хинолин и галогениды щелочных металлов, открытие



© 2025 chem21.info Реклама на сайте